173 research outputs found

    Ultracold atomic quantum gases far from equilibrium

    Full text link
    We calculate the time evolution of a far-from-equilibrium initial state of a non-relativistic ultracold Bose gas in one spatial dimension. The non-perturbative approximation scheme is based on a systematic expansion of the two-particle irreducible effective action in powers of the inverse number of field components. This yields dynamic equations which contain direct scattering, memory and off-shell effects that are not captured in mean-field theory.Comment: 4 pages, Proc. Int. Conf. Strong and Electroweak Matter, SEWM 2006; Nucl. Phys. A, to be publishe

    A Single-Particle Trigger for Time-of-Flight Measurements in Prompt-Gamma Imaging

    Full text link
    [EN] Tracking of single particles accelerated by synchrotrons is a subject that crosses several physics fields. The high clinical intensities used in particle therapy that can exceed 10(9)p/s make this task very challenging. The tracking of the arrival time of single particles in the ion beam is fundamental for the verification of the particle range and dose delivered to the patient. We present a prototype made of scintillating fibers which has been used to provide time-of-flight (TOF) information for three beam species currently accelerated at the Heidelberg Ion-Beam Therapy Center (HIT). We have demonstrated a time-tracker for a prompt-gamma spectroscopy system that allows for a background TOF rejection with a sub-nanosecond time resolution.PM was supported by a research fellowship for postdoctoral researchers from the Alexander von Humboldt Foundation, Bonn, Germany. RD was supported by the International Max Planck Research School for Quantum Dynamics in Physics, Chemistry and Biology, Heidelberg, Germany.Martins, PM.; Dal Bello, R.; Seimetz, M.; Hermann, G.; Kihm, T.; Seco, J. (2020). A Single-Particle Trigger for Time-of-Flight Measurements in Prompt-Gamma Imaging. Frontiers in Physics. 8:1-13. https://doi.org/10.3389/fphy.2020.00169S1138Parodi, K., Crespo, P., Eickhoff, H., Haberer, T., Pawelke, J., Schardt, D., & Enghardt, W. (2005). Random coincidences during in-beam PET measurements at microbunched therapeutic ion beams. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 545(1-2), 446-458. doi:10.1016/j.nima.2005.02.002Crespo, P., Barthel, T., Frais-Kolbl, H., Griesmayer, E., Heidel, K., Parodi, K., … Enghardt, W. (2005). Suppression of random coincidences during in-beam PET measurements at ion beam radiotherapy facilities. IEEE Transactions on Nuclear Science, 52(4), 980-987. doi:10.1109/tns.2005.852637Testa, E., Bajard, M., Chevallier, M., Dauvergne, D., Le Foulher, F., Freud, N., … Testa, M. (2008). Monitoring the Bragg peak location of 73MeV∕u carbon ions by means of prompt γ-ray measurements. Applied Physics Letters, 93(9), 093506. doi:10.1063/1.2975841Biegun, A. K., Seravalli, E., Lopes, P. C., Rinaldi, I., Pinto, M., Oxley, D. C., … Schaart, D. R. (2012). Time-of-flight neutron rejection to improve prompt gamma imaging for proton range verification: a simulation study. Physics in Medicine and Biology, 57(20), 6429-6444. doi:10.1088/0031-9155/57/20/6429Smeets, J., Roellinghoff, F., Prieels, D., Stichelbaut, F., Benilov, A., Busca, P., … Dubus, A. (2012). Prompt gamma imaging with a slit camera for real-time range control in proton therapy. Physics in Medicine and Biology, 57(11), 3371-3405. doi:10.1088/0031-9155/57/11/3371Verburg, J. M., Riley, K., Bortfeld, T., & Seco, J. (2013). Energy- and time-resolved detection of prompt gamma-rays for proton range verification. Physics in Medicine and Biology, 58(20), L37-L49. doi:10.1088/0031-9155/58/20/l37Golnik, C., Hueso-González, F., Müller, A., Dendooven, P., Enghardt, W., Fiedler, F., … Pausch, G. (2014). Range assessment in particle therapy based on promptγ-ray timing measurements. Physics in Medicine and Biology, 59(18), 5399-5422. doi:10.1088/0031-9155/59/18/5399Cambraia Lopes, P., Clementel, E., Crespo, P., Henrotin, S., Huizenga, J., Janssens, G., … Schaart, D. R. (2015). Time-resolved imaging of prompt-gamma rays for proton range verification using a knife-edge slit camera based on digital photon counters. Physics in Medicine and Biology, 60(15), 6063-6085. doi:10.1088/0031-9155/60/15/6063Petzoldt, J., Roemer, K. E., Enghardt, W., Fiedler, F., Golnik, C., Hueso-González, F., … Pausch, G. (2016). Characterization of the microbunch time structure of proton pencil beams at a clinical treatment facility. Physics in Medicine and Biology, 61(6), 2432-2456. doi:10.1088/0031-9155/61/6/2432Verburg, J. M., & Seco, J. (2014). Proton range verification through prompt gamma-ray spectroscopy. Physics in Medicine and Biology, 59(23), 7089-7106. doi:10.1088/0031-9155/59/23/7089Hueso-González, F., Enghardt, W., Fiedler, F., Golnik, C., Janssens, G., Petzoldt, J., … Pausch, G. (2015). First test of the prompt gamma ray timing method with heterogeneous targets at a clinical proton therapy facility. Physics in Medicine and Biology, 60(16), 6247-6272. doi:10.1088/0031-9155/60/16/6247Martins, P. M., Dal Bello, R., Rinscheid, A., Roemer, K., Werner, T., Enghardt, W., … Seco, J. (2017). Prompt gamma spectroscopy for range control with CeBr3. Current Directions in Biomedical Engineering, 3(2), 113-117. doi:10.1515/cdbme-2017-0023Gil, E. C., Albarrán, E. M., Minucci, E., Nüssle, G., Padolski, S., Petrov, P., … Kozhuharov, V. (2017). The beam and detector of the NA62 experiment at CERN. Journal of Instrumentation, 12(05), P05025-P05025. doi:10.1088/1748-0221/12/05/p05025Schüttauf, A. (2004). Timing RPCs in FOPI. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 533(1-2), 65-68. doi:10.1016/j.nima.2004.07.002Alici, A. (2012). Status and performance of the ALICE MRPC-based Time-Of-Flight detector. Journal of Instrumentation, 7(10), P10024-P10024. doi:10.1088/1748-0221/7/10/p10024Blanco, A., Fonte, P., Garzon, J. A., Koenig, W., Kornakov, G., & Lopes, L. (2013). Performance of the HADES-TOF RPC wall in a Au + Au beam at 1.25 AGeV. Journal of Instrumentation, 8(01), P01004-P01004. doi:10.1088/1748-0221/8/01/p01004Sadrozinski, H. F.-W., Ely, S., Fadeyev, V., Galloway, Z., Ngo, J., Parker, C., … Vinattieri, A. (2013). Ultra-fast silicon detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 730, 226-231. doi:10.1016/j.nima.2013.06.033Cartiglia, N., Staiano, A., Sola, V., Arcidiacono, R., Cirio, R., Cenna, F., … Zavrtanik, M. (2017). Beam test results of a 16 ps timing system based on ultra-fast silicon detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 850, 83-88. doi:10.1016/j.nima.2017.01.021Sadrozinski, H. F.-W., Seiden, A., & Cartiglia, N. (2017). 4D tracking with ultra-fast silicon detectors. Reports on Progress in Physics, 81(2), 026101. doi:10.1088/1361-6633/aa94d3Beddar, A. S., Mackie, T. R., & Attix, F. H. (1992). Water-equivalent plastic scintillation detectors for high-energy beam dosimetry: I. Physical characteristics and theoretical considerations. Physics in Medicine and Biology, 37(10), 1883-1900. doi:10.1088/0031-9155/37/10/006Beddar, A. S., Mackie, T. R., & Attix, F. H. (1992). Water-equivalent plastic scintillation detectors for high-energy beam dosimetry: II. Properties and measurements. Physics in Medicine and Biology, 37(10), 1901-1913. doi:10.1088/0031-9155/37/10/007Beaulieu, L., & Beddar, S. (2016). Review of plastic and liquid scintillation dosimetry for photon, electron, and proton therapy. Physics in Medicine and Biology, 61(20), R305-R343. doi:10.1088/0031-9155/61/20/r305Beddar, S., & Beaulieu, L. (Eds.). (2016). Scintillation Dosimetry. Imaging in Medical Diagnosis and Therapy. doi:10.1201/b19491Marcatili, S., Collot, J., Curtoni, S., Dauvergne, D., Hostachy, J.-Y., Koumeir, C., … Yamouni, M. (2020). Ultra-fast prompt gamma detection in single proton counting regime for range monitoring in particle therapy. Physics in Medicine & Biology, 65(24), 245033. doi:10.1088/1361-6560/ab7a6cKirn, T. (2017). SciFi – A large scintillating fibre tracker for LHCb. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 845, 481-485. doi:10.1016/j.nima.2016.06.057Leverington, B. D., Dziewiecki, M., Renner, L., & Runze, R. (2018). A prototype scintillating fibre beam profile monitor for Ion Therapy beams. Journal of Instrumentation, 13(05), P05030-P05030. doi:10.1088/1748-0221/13/05/p05030Vignati, A., Monaco, V., Attili, A., Cartiglia, N., Donetti, M., Mazinani, M. F., … Cirio, R. (2017). Innovative thin silicon detectors for monitoring of therapeutic proton beams: preliminary beam tests. Journal of Instrumentation, 12(12), C12056-C12056. doi:10.1088/1748-0221/12/12/c12056Krimmer, J., Dauvergne, D., Létang, J. M., & Testa, É. (2018). Prompt-gamma monitoring in hadrontherapy: A review. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 878, 58-73. doi:10.1016/j.nima.2017.07.063Pausch, G., Berthold, J., Enghardt, W., Römer, K., Straessner, A., Wagner, A., … Kögler, T. (2020). Detection systems for range monitoring in proton therapy: Needs and challenges. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 954, 161227. doi:10.1016/j.nima.2018.09.062Hueso-Gonzalez, F., & Bortfeld, T. (2020). Compact Method for Proton Range Verification Based on Coaxial Prompt Gamma-Ray Monitoring: A Theoretical Study. IEEE Transactions on Radiation and Plasma Medical Sciences, 4(2), 170-183. doi:10.1109/trpms.2019.2930362Haberer, T., Debus, J., Eickhoff, H., Jäkel, O., Schulz-Ertner, D., & Weber, U. (2004). The heidelberg ion therapy center. Radiotherapy and Oncology, 73, S186-S190. doi:10.1016/s0167-8140(04)80046-xHara, K., Hata, K., Kim, S., Mishina, M., Sano, M., Seiya, Y., … Yasuoka, K. (1998). Radiation hardness and mechanical durability of Kuraray optical fibers. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 411(1), 31-40. doi:10.1016/s0168-9002(98)00281-2Joram, C., Haefeli, G., & Leverington, B. (2015). Scintillating Fibre Tracking at High Luminosity Colliders. Journal of Instrumentation, 10(08), C08005-C08005. doi:10.1088/1748-0221/10/08/c08005EkelhofRJ Studies for the LHCb SciFi Tracker - Development of Modules from Scintillating Fibres and Tests of their Radiation Hardness2016Online control of particle therapy - CLaRyS collaboration1825 DauvergneD Final MediNet Network Meeting2019Tessonnier, T., Mairani, A., Chen, W., Sala, P., Cerutti, F., Ferrari, A., … Parodi, K. (2018). Proton and helium ion radiotherapy for meningioma tumors: a Monte Carlo-based treatment planning comparison. Radiation Oncology, 13(1). doi:10.1186/s13014-017-0944-3Mein, S., Dokic, I., Klein, C., Tessonnier, T., Böhlen, T. T., Magro, G., … Mairani, A. (2019). Biophysical modeling and experimental validation of relative biological effectiveness (RBE) for 4He ion beam therapy. Radiation Oncology, 14(1). doi:10.1186/s13014-019-1295-zSchoemers, C., Feldmeier, E., Naumann, J., Panse, R., Peters, A., & Haberer, T. (2015). The intensity feedback system at Heidelberg Ion-Beam Therapy Centre. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 795, 92-99. doi:10.1016/j.nima.2015.05.054Werner, F., Bauer, C., Bernhard, S., Capasso, M., Diebold, S., Eisenkolb, F., … Zietara, K. (2017). Performance verification of the FlashCam prototype camera for the Cherenkov Telescope Array. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 876, 31-34. doi:10.1016/j.nima.2016.12.056Actis, M., Agnetta, G., Aharonian, F., Akhperjanian, A., Aleksić, J., … Antico, F. (2011). Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy. Experimental Astronomy, 32(3), 193-316. doi:10.1007/s10686-011-9247-0Dal Bello, R., Magalhaes Martins, P., Graça, J., Hermann, G., Kihm, T., & Seco, J. (2019). Results from the experimental evaluation of CeBr scintillators for He prompt gamma spectroscopy. Medical Physics, 46(8), 3615-3626. doi:10.1002/mp.13594Puehlhofer, G., Bauer, C., Bernhard, S., Capasso, M., Diebold, S., Eisenkolb, F., … Zietara, K. (2016). FlashCam: a fully-digital camera for the medium-sized telescopes of the Cherenkov Telescope Array. Proceedings of The 34th International Cosmic Ray Conference — PoS(ICRC2015). doi:10.22323/1.236.1039Testa, M., Bajard, M., Chevallier, M., Dauvergne, D., Freud, N., Henriquet, P., … Testa, E. (2010). Real-time monitoring of the Bragg-peak position in ion therapy by means of single photon detection. Radiation and Environmental Biophysics, 49(3), 337-343. doi:10.1007/s00411-010-0276-2Dal Bello, R., Magalhaes Martins, P., Brons, S., Hermann, G., Kihm, T., Seimetz, M., & Seco, J. (2020). Prompt gamma spectroscopy for absolute range verification of 12C ions at synchrotron-based facilities. Physics in Medicine & Biology, 65(9), 095010. doi:10.1088/1361-6560/ab797321768 LeoWR Techniques for Nuclear and Particle Physics Experiments: A How-to Approach1994Graeff, C., Weber, U., Schuy, C., Saito, N., Volz, L., Piersimoni, P., … Kraemer, M. (2018). [OA027] Helium as a range probe in carbon ion therapy. Physica Medica, 52, 11. doi:10.1016/j.ejmp.2018.06.099Mazzucconi, D., Agosteo, S., Ferrarini, M., Fontana, L., Lante, V., Pullia, M., & Savazzi, S. (2018). Mixed particle beam for simultaneous treatment and online range verification in carbon ion therapy: Proof‐of‐concept study. Medical Physics, 45(11), 5234-5243. doi:10.1002/mp.13219Scintillating Fiber Trackers: recent developments and applications204 BlancF 14th ICATPP Conference on Astroparticle, Particle, Space Physics and Detectors for Physics Applications2013JoramC UwerU LeveringtonBD KirnT BachmannS EkelhofRJ LHCb Scintillating Fibre Tracker Engineering Design Review Report: Fibres, Mats and Modules201

    Prompt gamma spectroscopy for absolute range verification of 12C ions at synchroton-based facilities

    Full text link
    [EN] The physical range uncertainty limits the exploitation of the full potential of charged particle therapy. In this work, we face this issue aiming to measure the absolute Bragg peak position in the target. We investigate p, He-4, C-12 and O-16 beams accelerated at the Heidelberg Ion-Beam Therapy Center. The residual range of the primary C-12 ions is correlated to the energy spectrum of the prompt gamma radiation. The prompt gamma spectroscopy method was demonstrated for proton beams accelerated by cyclotrons and is developed here for the first time for heavier ions accelerated by a synchrotron. We develop a detector system that includes (i) a spectroscopic unit based on cerium(III) bromide and bismuth germanium oxide scintillating crystals, (ii) a beam trigger based on an array of scintillating fibers and (iii) a data acquisition system based on a FlashADC. We test the system in two different scenarios. In the first series of experiments, we detect and identify 19 independent spectral lines over a wide gamma energy spectrum in the presence of the four ion species for different targets, including a water target with a titanium insert. In the second series of experiments, we introduce a collimator aiming to relate the spectral information to the range of the primary particles. We perform extensive measurements for a C-12 beam and demonstrate submillimetric precision for the measurement of its Bragg peak position in the experimental setup. The features of the energy and time spectra for gamma radiation induced by p, He-4 and O-16 are investigated upstream and downstream from the Bragg peak position. We conclude the analysis by extrapolating the required future developments, which would be needed to achieve range verification with a 2 mm accuracy during a single fraction delivery of D=2 Gy<i physical dose.The author R.D.B. is supported by the International Max Planck Research School for Quantum Dynamics in Physics, Chemistry and Biology, Heidelberg, Germany. P.M.M. is supported by a research fellowship for postdoctoral researchers from the Alexander von Humboldt Foundation, Bonn, Germany. The authors thank the Radiation Protection Department of the DKFZ, in particular Mechthild Kammer, for the support with calibration sources. The authors also thank the staff of the Department of Medical Physics in Radiation Oncology of the DKFZ, in particular Gernot Echner, Armin Runz and Peter Haring for the support with the experimental setup.Dal Bello, R.; Martins, PM.; Brons, S.; Hermann, G.; Kihm, T.; Seimetz, M.; Seco, J. (2020). Prompt gamma spectroscopy for absolute range verification of 12C ions at synchroton-based facilities. Physics in Medicine and Biology. 65(9):1-23. https://doi.org/10.1088/1361-6560/ab7973S123659Amaldi, U., & Kraft, G. (2005). Radiotherapy with beams of carbon ions. Reports on Progress in Physics, 68(8), 1861-1882. doi:10.1088/0034-4885/68/8/r04Aricò, G., Gehrke, T., Gallas, R., Mairani, A., Jäkel, O., & Martišíková, M. (2019). Investigation of single carbon ion fragmentation in water and PMMA for hadron therapy. Physics in Medicine & Biology, 64(5), 055018. doi:10.1088/1361-6560/aafa46Böhlen, T. T., Cerutti, F., Chin, M. P. W., Fassò, A., Ferrari, A., Ortega, P. G., … Vlachoudis, V. (2014). The FLUKA Code: Developments and Challenges for High Energy and Medical Applications. Nuclear Data Sheets, 120, 211-214. doi:10.1016/j.nds.2014.07.049Bragg, W. H., & Kleeman, R. (1905). XXXIX. On the α particles of radium, and their loss of range in passing through various atoms and molecules. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 10(57), 318-340. doi:10.1080/14786440509463378Brun, R., & Rademakers, F. (1997). ROOT — An object oriented data analysis framework. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 389(1-2), 81-86. doi:10.1016/s0168-9002(97)00048-xCastriconi, R., Ciocca, M., Mirandola, A., Sini, C., Broggi, S., Schwarz, M., … Russo, P. (2016). Dose–response of EBT3 radiochromic films to proton and carbon ion clinical beams. Physics in Medicine and Biology, 62(2), 377-393. doi:10.1088/1361-6560/aa5078Guttormsen, M., Tveter, T. ., Bergholt, L., Ingebretsen, F., & Rekstad, J. (1996). The unfolding of continuum γ-ray spectra. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 374(3), 371-376. doi:10.1016/0168-9002(96)00197-0Haberer, T., Debus, J., Eickhoff, H., Jäkel, O., Schulz-Ertner, D., & Weber, U. (2004). The heidelberg ion therapy center. Radiotherapy and Oncology, 73, S186-S190. doi:10.1016/s0167-8140(04)80046-xHueso-González, F., Rabe, M., Ruggieri, T. A., Bortfeld, T., & Verburg, J. M. (2018). A full-scale clinical prototype for proton range verification using prompt gamma-ray spectroscopy. Physics in Medicine & Biology, 63(18), 185019. doi:10.1088/1361-6560/aad513Kelleter, L., Wrońska, A., Besuglow, J., Konefał, A., Laihem, K., Leidner, J., … Tessonnier, T. (2017). Spectroscopic study of prompt-gamma emission for range verification in proton therapy. Physica Medica, 34, 7-17. doi:10.1016/j.ejmp.2017.01.003Knopf, A.-C., & Lomax, A. (2013). In vivoproton range verification: a review. Physics in Medicine and Biology, 58(15), R131-R160. doi:10.1088/0031-9155/58/15/r131Kozlovsky, B., Murphy, R. J., & Ramaty, R. (2002). Nuclear Deexcitation Gamma‐Ray Lines from Accelerated Particle Interactions. The Astrophysical Journal Supplement Series, 141(2), 523-541. doi:10.1086/340545Krimmer, J., Dauvergne, D., Létang, J. M., & Testa, É. (2018). Prompt-gamma monitoring in hadrontherapy: A review. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 878, 58-73. doi:10.1016/j.nima.2017.07.063Leverington, B. D., Dziewiecki, M., Renner, L., & Runze, R. (2018). A prototype scintillating fibre beam profile monitor for Ion Therapy beams. Journal of Instrumentation, 13(05), P05030-P05030. doi:10.1088/1748-0221/13/05/p05030Mein, S., Choi, K., Kopp, B., Tessonnier, T., Bauer, J., Ferrari, A., … Mairani, A. (2018). Fast robust dose calculation on GPU for high-precision 1H, 4He, 12C and 16O ion therapy: the FRoG platform. Scientific Reports, 8(1). doi:10.1038/s41598-018-33194-4Paganetti, H. (2012). Range uncertainties in proton therapy and the role of Monte Carlo simulations. Physics in Medicine and Biology, 57(11), R99-R117. doi:10.1088/0031-9155/57/11/r99Panaino, C., Taylor, M. J., MacKay, R., Merchant, M. J., Price, T., Pheonix, B., & Green, S. (2018). Abstract ID: 171 A Monte Carlo study to reduce range uncertainty in proton beam therapy via prompt gamma-ray detection. Physica Medica, 45, S2. doi:10.1016/j.ejmp.2017.11.027Pinto, M., Bajard, M., Brons, S., Chevallier, M., Dauvergne, D., Dedes, G., … Testa, M. (2014). Absolute prompt-gamma yield measurements for ion beam therapy monitoring. Physics in Medicine and Biology, 60(2), 565-594. doi:10.1088/0031-9155/60/2/565Quarati, F. G. A., Dorenbos, P., van der Biezen, J., Owens, A., Selle, M., Parthier, L., & Schotanus, P. (2013). Scintillation and detection characteristics of high-sensitivity CeBr3 gamma-ray spectrometers. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 729, 596-604. doi:10.1016/j.nima.2013.08.005Dal Bello, R., Magalhaes Martins, P., & Seco, J. (2018). CeBr3scintillators for4He prompt gamma spectroscopy: Results from a Monte Carlo optimization study. Medical Physics, 45(4), 1622-1630. doi:10.1002/mp.12795Dal Bello, R., Magalhaes Martins, P., Graça, J., Hermann, G., Kihm, T., & Seco, J. (2019). Results from the experimental evaluation of CeBr scintillators for He prompt gamma spectroscopy. Medical Physics, 46(8), 3615-3626. doi:10.1002/mp.13594Roemer, K., Pausch, G., Bemmerer, D., Berthel, M., Dreyer, A., Golnik, C., … Fiedler, F. (2015). Characterization of scintillator crystals for usage as prompt gamma monitors in particle therapy. Journal of Instrumentation, 10(10), P10033-P10033. doi:10.1088/1748-0221/10/10/p10033Testa, M., Bajard, M., Chevallier, M., Dauvergne, D., Freud, N., Henriquet, P., … Testa, E. (2010). Real-time monitoring of the Bragg-peak position in ion therapy by means of single photon detection. Radiation and Environmental Biophysics, 49(3), 337-343. doi:10.1007/s00411-010-0276-2Tommasino, F., Scifoni, E., & Durante, M. (2015). New Ions for Therapy. International Journal of Particle Therapy, 2(3), 428-438. doi:10.14338/ijpt-15-00027.1Vanstalle, M., Mattei, I., Sarti, A., Bellini, F., Bini, F., Collamati, F., … Tessa, C. L. (2017). Benchmarking Geant4 hadronic models for prompt‐ γ monitoring in carbon ion therapy. Medical Physics, 44(8), 4276-4286. doi:10.1002/mp.12348Verburg, J. M., Riley, K., Bortfeld, T., & Seco, J. (2013). Energy- and time-resolved detection of prompt gamma-rays for proton range verification. Physics in Medicine and Biology, 58(20), L37-L49. doi:10.1088/0031-9155/58/20/l37Verburg, J. M., & Seco, J. (2014). Proton range verification through prompt gamma-ray spectroscopy. Physics in Medicine and Biology, 59(23), 7089-7106. doi:10.1088/0031-9155/59/23/7089Werner, F., Bauer, C., Bernhard, S., Capasso, M., Diebold, S., Eisenkolb, F., … Zietara, K. (2017). Performance verification of the FlashCam prototype camera for the Cherenkov Telescope Array. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 876, 31-34. doi:10.1016/j.nima.2016.12.05

    Relación de la ingesta a largo plazo de macronutrientes en las hormonas anabólicas-catabólicas de jugadoras de voleibol elite

    Get PDF
    [EN] Introduction: Specific macronutrient distribution and training can alter acute and chronic hormone behavior and, subsequently, sport performance. Objective: The main aim was to examine relationships between dietary intake and anabolic/catabolic hormone response in elite female volleyball players during a 29-week season. Methods: Twenty-two elite female volleyballers (26.4 ± 5.6 years; 178 ± 9 cm; 67.1±7.5 kg) had dietary intake (seven-day dietary recall and food frequency questionnaire), blood concentration of anabolic/catabolic hormones concentration, physical performance, and body composition assessed at four time points: a) T1: baseline/pre-testing; b) T2: eleven weeks after T1; c) T3: ten weeks after T2; and d) T4: eight weeks after T3. Hormones evaluated were: total testosterone (TT), free testosterone (FT) adrenocorticotropic hormone (ACTH), and cortisol (C), along with hormone ratios. Results: Positive correlations were observed between carbohydrate/protein ratio with ΔFT (r = 0.955; p 0.05) in body mass or body mass index at any time point, and the sum of six skinfolds improved (p < 0.05) from T1 (86.5 ± 6.9 mm) to T4 (75.2 ± 5.6 mm) as did muscle mass (T1: 28.9 ± 0.7 kg vs T4: 30.1 ± 0.8 kg). Vertical jump, spike-jump and speed improved (p < 0.05) from T1 to T4. Conclusions: A high carbohydrate/protein ratio was associated with positive changes in anabolism, while high protein and low carbohydrates (CHO) were associated with an attenuated anabolic response[ES] Introducción: la distribución específica de macronutrientes y el entrenamiento pueden alterar el comportamiento agudo y crónico de las hormonas y, posteriormente, el rendimiento deportivo. Objetivo: el objetivo principal del estudio fue examinar la relación entre la ingesta dietética y la respuesta anabólica/catabólica hormonal de jugadoras de élite de voleibol durante una temporada de 29 semanas. Métodos: se evaluó en 22 jugadoras de élite (26,4 ± 5,6 años, 178 ± 9 cm, 67,1 ± 7,5 kg) la ingesta dietética (mediante un registro de siete días y un cuestionario de frecuencia de consumo de alimentos), la concentración de hormona anabólica/catabólica en sangre, el rendimiento físico y la composición corporal en cuatro puntos durante la temporada: a) T1: pre-pretemporada; b) T2: once semanas después de T1; c) T3: diez semanas después de T2; y d) T4: ocho semanas después de T3. Las hormonas evaluadas fueron: testosterona total (TT), testosterona libre (FT), hormona adrenocorticotropa (ACTH) y cortisol (C); se calcularon distintos ratios hormonales. Resultados: se observaron correlaciones positivas entre la ratio carbohidratos/proteínas con ΔFT (r = 0,955; p 0,05) en la masa corporal ni en el índice de masa corporal en ningún momento, mientras que el sumatorio de seis pliegues mejoró (p < 0,05) de T1 (86,5 ± 6,9 mm) a T4 (75,2 ± 5,6 mm), así como la masa muscular (T1: 28,9 ± 0,7 kg frente a T4: 30,1 ± 0,8 kg). El salto vertical, el salto de remate y la velocidad mejoraron (p < 0,05) de T1 a T4. Conclusión: en conclusión, una alta ratio de carbohidratos/proteínas se asoció con cambios positivos en el anabolismo, mientras que una ingesta alta de proteína y baja de CHO se asoció con una respuesta anabólica atenuada.S

    MSSM Electroweak Baryogenesis and Flavour Mixing in Transport Equations

    Full text link
    We make use of the formalism developed in Ref. [1], and calculate the chargino mediated baryogenesis in the Minimal Supersymmetric Standard Model. The formalism makes use of a gradient expansion of the Kadanoff-Baym equations for mixing fermions. For illustrative purposes, we first discuss the semiclassical transport equations for mixing bosons in a space-time dependent Higgs background. To calculate the baryon asymmetry, we solve a standard set of diffusion equations, according to which the chargino asymmetry is transported to the top sector, where it biases sphaleron transitions. At the end we make a qualitative and quantitative comparison of our results with the existing work. We find that the production of the baryon asymmetry of the Universe by CP-violating currents in the chargino sector is strongly constrained by measurements of electric dipole moments.Comment: 30 pages, 6 figures; minor changes, published versio

    Rede Alumni : uma estratégia responsável ao serviço do desenvolvimento do turismo local

    Get PDF
    Comunicação apresentada no VI International Tourism Congress, ESTM, Peniche, 2013.Organizations including higher education institutions need to enhance the relationships with their stakeholders, especially with their alumni, in order to promote a set of long term mutual competitive advantages. In this way, organizational sustainability is gaining new ground and plays a fundamental role as a way of attaining a broad goal in terms of sustainable development. Higher education institutions should develop relationship and transparency strategies of corporate actions in order to create trust and also to leverage synergies by using alumni networks. This can be achieved through Information and Communication Technologies (ICT), especially the web, and the most recent and globalized platforms like Facebook and Linkedin as privileged channels for communicating with alumni. In addition, the development of actions that try to promote an approach and the engagement of alumni among different initiatives not only inside the institution, but also in terms of local and/or regional context, could create added value and contribute to local tourism development. The present study aims to analyze the development of the network of a higher education institution, namely, the IPLeiri@lumni Network, assessing the platform design, the measures taken by the institution to renew the relationship with their alumni, and the resulting advantages from the paths taken by some alumni as a way of identifying the potential added value for the development of local tourism of the region

    Extracorporeal membrane oxygenation for very high-risk transcatheter aortic valve implantation

    Get PDF
    Background Transcatheter aortic valve implantation (TAVI) can cause profound haemodynamic perturbation in the peri-operative period. Veno-arterial extracorporeal membrane oxygenation (ECMO) can be used to provide cardiorespiratory support during this time, either prophylactically or emergently
    corecore