6,103 research outputs found

    Production of multipartite entanglement for electron spins in quantum dots

    Full text link
    We propose how to generate genuine multipartite entanglement of electron spin qubits in a chain of quantum dots using the naturally available single-qubit rotations and two-qubit Heisenberg exchange interaction in the system. We show that the minimum number of required operations to generate entangled states of the GHZ-, cluster and W-type scales linearly with the number of qubits and estimate the fidelities of the generated entangled cluster states. As the required single and two-qubit operations have recently been realized, our proposed scheme opens the way for experimental investigation of multipartite entanglement with electron spin qubits.Comment: 8 pages, 2 Figure

    A novel rabbit monoclonal antibody platform to dissect the diverse repertoire of antibody epitopes for HIV-1 Env immunogen design

    Get PDF
    The majority of available monoclonal antibodies (MAbs) in the current HIV vaccine field are generated from HIV-1-infected people. In contrast, preclinical immunogenicity studies have mainly focused on polyclonal antibody responses in experimental animals. Although rabbits have been widely used for antibody studies, there has been no report of using rabbit MAbs to dissect the specificity of antibody responses for AIDS vaccine development. Here we report on the production of a panel of 12 MAbs from a New Zealand White (NZW) rabbit that was immunized with an HIV-1 JR-FL gp120 DNA prime and protein boost vaccination regimen. These rabbit MAbs recognized a diverse repertoire of envelope (Env) epitopes ranging from the highly immunogenic V3 region to several previously underappreciated epitopes in the C1, C4, and C5 regions. Nine MAbs showed cross-reactivity to gp120s of clades other than clade B. Increased somatic mutation and extended CDR3 were observed with Ig genes of several molecularly cloned rabbit MAbs. Phylogenic tree analysis showed that the heavy chains of MAbs recognizing the same region on gp120 tend to segregate into an independent subtree. At least three rabbit MAbs showed neutralizing activities with various degrees of breadth and potency. The establishment of this rabbit MAb platform will significantly enhance our ability to test optimal designs of Env immunogens to gain a better understanding of the structural specificity and evolution process of Env-specific antibody responses elicited by candidate AIDS vaccines

    Critical points and supersymmetric vacua, III: String/M models

    Full text link
    A fundamental problem in contemporary string/M theory is to count the number of inequivalent vacua satisfying constraints in a string theory model. This article contains the first rigorous results on the number and distribution of supersymmetric vacua of type IIb string theories compactified on a Calabi-Yau 3-fold XX with flux. In particular, complete proofs of the counting formulas in Ashok-Douglas and Denef-Douglas are given, together with van der Corput style remainder estimates. We also give evidence that the number of vacua satisfying the tadpole constraint in regions of bounded curvature in moduli space is of exponential growth in b3(X)b_3(X).Comment: Final revision for publication in Commun. Math. Phys. Minor corrections and editorial change

    Microwave study of quantum n-disk scattering

    Full text link
    We describe a wave-mechanical implementation of classically chaotic n-disk scattering based on thin 2-D microwave cavities. Two, three, and four-disk scattering are investigated in detail. The experiments, which are able to probe the stationary Green's function of the system, yield both frequencies and widths of the low-lying quantum resonances. The observed spectra are found to be in good agreement with calculations based on semiclassical periodic orbit theory. Wave-vector autocorrelation functions are analyzed for various scattering geometries, the small wave-vector behavior allowing one to extract the escape rate from the quantum repeller. Quantitative agreement is found with the value predicted from classical scattering theory. For intermediate energies, non-universal oscillations are detected in the autocorrelation function, reflecting the presence of periodic orbits.Comment: 13 pages, 8 eps figures include

    Insulating behavior in ultra-thin bismuth selenide field effect transistors

    Full text link
    Ultrathin (~3 quintuple layer) field-effect transistors (FETs) of topological insulator Bi2Se3 are prepared by mechanical exfoliation on 300nm SiO2/Si susbtrates. Temperature- and gate-voltage dependent conductance measurements show that ultrathin Bi2Se3 FETs are n-type, and have a clear OFF state at negative gate voltage, with activated temperature-dependent conductance and energy barriers up to 250 meV

    Exploring 4D Quantum Hall Physics with a 2D Topological Charge Pump

    Get PDF
    The discovery of topological states of matter has profoundly augmented our understanding of phase transitions in physical systems. Instead of local order parameters, topological phases are described by global topological invariants and are therefore robust against perturbations. A prominent example thereof is the two-dimensional integer quantum Hall effect. It is characterized by the first Chern number which manifests in the quantized Hall response induced by an external electric field. Generalizing the quantum Hall effect to four-dimensional systems leads to the appearance of a novel non-linear Hall response that is quantized as well, but described by a 4D topological invariant - the second Chern number. Here, we report on the first observation of a bulk response with intrinsic 4D topology and the measurement of the associated second Chern number. By implementing a 2D topological charge pump with ultracold bosonic atoms in an angled optical superlattice, we realize a dynamical version of the 4D integer quantum Hall effect. Using a small atom cloud as a local probe, we fully characterize the non-linear response of the system by in-situ imaging and site-resolved band mapping. Our findings pave the way to experimentally probe higher-dimensional quantum Hall systems, where new topological phases with exotic excitations are predicted

    Crystalline Assemblies and Densest Packings of a Family of Truncated Tetrahedra and the Role of Directional Entropic Forces

    Full text link
    Polyhedra and their arrangements have intrigued humankind since the ancient Greeks and are today important motifs in condensed matter, with application to many classes of liquids and solids. Yet, little is known about the thermodynamically stable phases of polyhedrally-shaped building blocks, such as faceted nanoparticles and colloids. Although hard particles are known to organize due to entropy alone, and some unusual phases are reported in the literature, the role of entropic forces in connection with polyhedral shape is not well understood. Here, we study thermodynamic self-assembly of a family of truncated tetrahedra and report several atomic crystal isostructures, including diamond, {\beta}-tin, and high- pressure lithium, as the polyhedron shape varies from tetrahedral to octahedral. We compare our findings with the densest packings of the truncated tetrahedron family obtained by numerical compression and report a new space filling polyhedron, which has been overlooked in previous searches. Interestingly, the self-assembled structures differ from the densest packings. We show that the self-assembled crystal structures can be understood as a tendency for polyhedra to maximize face-to-face alignment, which can be generalized as directional entropic forces.Comment: Article + supplementary information. 23 pages, 10 figures, 2 table

    Renormalization-Scale-Invariant PQCD Predictions for R_e+e- and the Bjorken Sum Rule at Next-to-Leading Order

    Get PDF
    We discuss application of the physical QCD effective charge αV\alpha_V, defined via the heavy-quark potential, in perturbative calculations at next-to-leading order. When coupled with the Brodsky-Lepage-Mackenzie prescription for fixing the renormalization scales, the resulting series are automatically and naturally scale and scheme independent, and represent unambiguous predictions of perturbative QCD. We consider in detail such commensurate scale relations for the e+ee^+e^- annihilation ratio Re+eR_{e^+e^-} and the Bjorken sum rule. In both cases the improved predictions are in excellent agreement with experiment.Comment: 13 Latex pages with 5 figures; to be published in Physical Review

    A Spectroscopic Survey of a Sample of Active M Dwarfs

    Get PDF
    A moderate resolution spectroscopic survey of Fleming's sample of 54 X-ray selected M dwarfs with photometric distances less than 25 pc is presented. Radial and rotation velocities have been measured by fits to the H-alpha profiles. Radial velocities have been measured by cross correlation. Artificial broadening of an observed spectrum has produced a relationship between H-alpha FWHM and rotation speed, which we use to infer rotation speeds for the entire sample by measurement of the H-alpha emission line. We find 3 ultra-fast rotators (UFRs, vsini > 100km/s), and 8 stars with 30 < vsini < 100 km/s. The UFRs have variable emission. Cross-correlation velocities measured for ultra-fast rotators (UFRs) are shown to depend on rotation speed and the filtering used. The radial velocity dispersion of the sample is 17 km/s. A new double emission line spectroscopic binary with a period of 3.55 days has been discovered, and another known one is in the sample. Three other objects are suspected spectroscopic binaries, and at least six are visual doubles. The only star in the sample observed to have significant lithium is a known TW Hya Association member, TWA 8A. These results show that there are a number of young (< 10^8 yr) and very young (< 10^7 yr) low mass stars in the immediate solar neighbourhood. The H-alpha activity strength does not depend on rotation speed. Our fast rotators are less luminous than similarly fast rotators in the Pleiades. They are either younger than the Pleiades, or gained angular momentum in a different way.Comment: 38 pages incl. 14 figures and 4 tables, plus 12 pages of table for electronic journal only; LaTeX, aastex.cls. Accepted 07/18/02 for publication in The Astronomical Journa

    Stellar Mass--Gas-phase Metallicity Relation at 0.5z0.70.5\leq z\leq0.7: A Power Law with Increasing Scatter toward the Low-mass Regime

    Get PDF
    We present the stellar mass (MM_{*})--gas-phase metallicity relation (MZR) and its scatter at intermediate redshifts (0.5z0.70.5\leq z\leq0.7) for 1381 field galaxies collected from deep spectroscopic surveys. The star formation rate (SFR) and color at a given MM_{*} of this magnitude-limited (R24R\lesssim24 AB) sample are representative of normal star-forming galaxies. For masses below 109M10^9 M_\odot, our sample of 237 galaxies is \sim10 times larger than those in previous studies beyond the local universe. This huge gain in sample size enables superior constraints on the MZR and its scatter in the low-mass regime. We find a power-law MZR at 108M<M<1011M10^{8} M_\odot < M_{*} < 10^{11} M_\odot: 12+log(O/H)=(5.83±0.19)+(0.30±0.02)log(M/M){12+log(O/H) = (5.83\pm0.19) + (0.30\pm0.02)log(M_{*}/M_\odot)}. Our MZR shows good agreement with others measured at similar redshifts in the literature in the intermediate and massive regimes, but is shallower than the extrapolation of the MZRs of others to masses below 109M10^{9} M_\odot. The SFR dependence of the MZR in our sample is weaker than that found for local galaxies (known as the Fundamental Metallicity Relation). Compared to a variety of theoretical models, the slope of our MZR for low-mass galaxies agrees well with predictions incorporating supernova energy-driven winds. Being robust against currently uncertain metallicity calibrations, the scatter of the MZR serves as a powerful diagnostic of the stochastic history of gas accretion, gas recycling, and star formation of low-mass galaxies. Our major result is that the scatter of our MZR increases as MM_{*} decreases. Our result implies that either the scatter of the baryonic accretion rate or the scatter of the MM_{*}--MhaloM_{halo} relation increases as MM_{*} decreases. Moreover, our measures of scatter at z=0.7z=0.7 appears consistent with that found for local galaxies.Comment: 18 pages, 10 figures. Accepted by ApJ. Typos correcte
    corecore