Abstract

We describe a wave-mechanical implementation of classically chaotic n-disk scattering based on thin 2-D microwave cavities. Two, three, and four-disk scattering are investigated in detail. The experiments, which are able to probe the stationary Green's function of the system, yield both frequencies and widths of the low-lying quantum resonances. The observed spectra are found to be in good agreement with calculations based on semiclassical periodic orbit theory. Wave-vector autocorrelation functions are analyzed for various scattering geometries, the small wave-vector behavior allowing one to extract the escape rate from the quantum repeller. Quantitative agreement is found with the value predicted from classical scattering theory. For intermediate energies, non-universal oscillations are detected in the autocorrelation function, reflecting the presence of periodic orbits.Comment: 13 pages, 8 eps figures include

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 03/01/2020