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The discovery of topological states of matter
has profoundly augmented our understanding of
phase transitions in physical systems. Instead of
local order parameters, topological phases are de-
scribed by global topological invariants and are
therefore robust against perturbations. A promi-
nent example thereof is the two-dimensional in-
teger quantum Hall effect [1]. It is characterized
by the first Chern number, which manifests in
the quantized Hall response induced by an ex-
ternal electric field [2]. Generalizing the quan-
tum Hall effect to four-dimensional systems leads
to the appearance of a novel non-linear Hall re-
sponse that is quantized as well, but described
by a 4D topological invariant – the second Chern
number [3, 4]. Here, we report on the first obser-
vation of a bulk response with intrinsic 4D topol-
ogy and demonstrate its quantization by measur-
ing the associated second Chern number. By im-
plementing a 2D topological charge pump with ul-
tracold bosonic atoms in an angled optical super-
lattice, we realize a dynamical version of the 4D
integer quantum Hall effect [5, 6]. Using a small
atom cloud as a local probe, we fully characterize
the non-linear response of the system by in-situ
imaging and site-resolved band mapping. Our
findings pave the way to experimentally probe
higher-dimensional quantum Hall systems, where
new strongly correlated topological phases, exotic
collective excitations and boundary phenomena
such as isolated Weyl fermions are predicted [4].

Topology, originally a branch of mathematics, has be-
come an important concept in different fields of physics,
ranging from particle [7] to solid state physics [8] and
quantum computation [9]. In this context, a hallmark
achievement was the discovery of the 2D integer quan-
tum Hall (QH) effect [1]. It demonstrated that the Hall
conductance in a perpendicular magnetic field and in re-
sponse to an electric field E is quantized. In a cylindri-
cal geometry, following Laughlin’s gedankenexperiment,
E can be generated by varying the magnetic flux φx(t)
along the cylinder’s axis [10] (Fig. 1a). The interplay of
the perpendicular magnetic and the induced electric field
Ez creates a quantized Hall response in the x-direction
as an integer number of particles, determined by the first

Chern number, is transported between the edges per flux
quantum threaded through the cylinder [2].

Dimensionality plays a crucial role for topological
phases and many intriguing states were recently discov-
ered in 3D, e.g. Weyl semimetals [11, 12] and 3D topo-
logical insulators [13]. Ascending further in dimensions,
a 4D generalization of the QH effect was proposed in the
context of astrophysics [3] as well as condensed matter
systems [4] and has received much attention in theoret-
ical studies [8]. Unlike its 2D equivalent, it can occur
in systems both with and without time reversal symme-
try [3, 4]. The former constitutes the fundamental model
from which all lower-dimensional time-reversal symmet-
ric topological insulators can be derived [8, 14]. Further-
more, a 4D QH system might exhibit relativistic collec-
tive hyperedge excitations and novel strongly correlated
QH phases, revealing the interplay of quantum correla-
tions and dimensionality [4]. This interest was renewed
recently due to the unprecedented control and flexibility
of engineered systems like ultracold atoms and photon-
ics. Indeed, such systems have already been used to study
various topological effects [15, 16], including a measure-
ment of the second Chern number in an artificially gen-
erated parameter space [17], and they offer a direct route
for realizing 4D physics using synthetic dimensions [18–
20].

In the simplest case, a 4D QH system can be com-
posed of two 2D QH systems in orthogonal subspaces
(Fig. 1a, b). In addition to the quantized linear response
underlying the 2D QH effect, it exhibits a quantized non-
linear 4D Hall response [6]. The latter arises when –
simultaneously with the perturbing electric field E – a
magnetic perturbation B is added. The 4D symmetry
implies multiple possibilities for the orientation of E and
B. The resulting non-linear response, however, is always
characterized by the same 4D topological invariant, the
second Chern number. Here, we focus on the geome-
try depicted in Fig. 1a, b, where the non-linear response
can be understood semiclassically as originating from a
Lorentz force created by B, which couples the motion
in the two 2D QH systems [21]. The direction of this
response is transverse to both perturbing fields. Hence,
it can only occur in four or more dimensions and has
therefore never been observed in any physical system.

Topological charge pumps exhibit topological trans-



2

port properties similar to higher-dimensional QH systems
and provide a way to probe 4D QH physics in lower-
dimensional dynamical systems. The first example of a
topological charge pump is the 1D Thouless pump [5],
where an adiabatic periodic modulation generates a
quantized particle transport. This modulation can be
parametrized by a pump parameter and at each point in
the cycle, the 1D system constitutes a Fourier component
of a 2D QH system [14, 22]. The induced motion is thus
equivalent to the linear Hall response and characterized
by the same 2D topological invariant, the first Chern
number. Indeed, the QH effect on a cylinder can be
mapped to a 1D charge pump with the threaded flux φx
acting as the pump parameter [10] (Fig. 1a). Building on
pioneering condensed matter experiments [23], topologi-
cal charge pumps have recently been realized in photonic
waveguides [24] and with ultracold atoms [25, 26].

A dynamical 4D QH effect can accordingly be re-
alized with a 2D topological charge pump [6]. Us-
ing dimensional reduction [14, 22], the Fourier compo-
nents of a 4D QH system can be mapped onto a 2D
system. For the geometry in Fig. 1a, b, the corre-
sponding 2D model is a square superlattice (Fig. 1c
and Methods). It consists of two 1D superlattices
along x and y, each formed by superimposing two lat-
tices Vs,µ sin2 (πµ/ds,µ) + Vl,µ sin2 (πµ/dl,µ − ϕµ/2), µ ∈
{x, y}. Here, ds,µ and dl,µ > ds,µ denote the lattice pe-
riods and Vs,µ (Vl,µ) the depth of the short (long) lattice
potential, respectively. The position of the long lattices is
determined by the corresponding superlattice phases ϕµ.

The phase ϕx is chosen as the pump parameter,
i.e. pumping is performed by moving the long lattice
along x. This is equivalent to threading the flux φx in the
4D model, leading to a quantized motion along x – the
linear response (Fig. 1c, d). The magnetic perturbation
Bxw corresponds to a transverse phase ϕy that depends
linearly on x and thereby couples the motion in the x-
and y-direction (see Methods). We realize this by tilting
the long y-lattice relative to the short one by an angle
θ � 1 (Fig. 1c) such that ϕy(x) = ϕ

(0)
y + 2πθ x/dl,y to

first order in θ. When ϕx is varied, the motion along x
changes ϕy and – analogous to the Lorentz force in 4D
– induces a quantized non-linear response along y, which
is equivalent to the non-linear Hall response of a 4D QH
system [6] (Fig. 1c, d).

For a uniformly populated band in an infinite system,
the centre-of-mass (COM) displacement during one cycle
ϕx = 0→ 2π is

νx1 ax ex + ν2 θ
ax
dl,y

ay ey (1)

with ax (ay) being the size of the superlattice unit cell
and ex (ey) the unit vector along x (y) (see Methods).
The first term describes the quantized linear response
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Figure 1. Four-dimensional quantum Hall (QH) system and
corresponding 2D topological charge pump. (a) A 2D QH
system on a cylinder pierced by a uniform magnetic flux Φxz.
Threading a magnetic flux φx(t) through the cylinder creates
an electric field Ez on the surface, resulting in a linear Hall
response along x with velocity vx. (b) A 4D QH system can
be composed of two 2D QH systems in the xz- and yw-planes.
A weak magnetic perturbation Bxw in the xw-plane couples
the two systems and generates a Lorentz force Fw for particles
moving along x. This induces an additional non-linear Hall
response in the y-direction with velocity vy. (c) A dynamical
version of the 4D QH system can be realized with a topologi-
cal charge pump in a 2D superlattice (blue potentials). Such
a superlattice is created by superimposing two lattices with
periodicities ds (grey) and dl > ds (red) along both x and y,
depicted here for dl = 2ds as in the experiment. The black
circles show the lattice sites formed by the potential minima
and the black (grey) lines indicate strong (weak) tunnel cou-
pling between neighbouring sites. The system is modulated
periodically by adiabatically moving the long lattice along x,
mimicking the perturbing electric field Ez in the 4D model.
The magnetic perturbation Bxw maps onto a small tilt angle
θ of the long lattice along y with respect to the correspond-
ing short lattice. In this case, the shape of the double wells
along y depends on the position along x. The dashed red lines
indicate the potential minima of the tilted long lattice. (d)
The pumping gives rise to a motion of the atom cloud in the
x-direction, corresponding to the quantized linear response of
a 2D QH system. For non-zero θ, the two orthogonal axes
are coupled, leading to an additional quantized non-linear
response with 4D topology in the perpendicular y-direction.
(e) The velocity of the non-linear response is determined by
the product of the Berry curvatures ΩxΩy (see Methods), de-
picted here for the lowest subband with dl = 2ds and lattice
depths as in Fig. 3. The left (right) torus shows a cut at
ky = 0, ϕy = π/2 (kx = π/(2dl), ϕx = π/2) through the
generalized 4D Brillouin zone spanned by kx, ϕx, ky and ϕy.
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along x. It is proportional to the pump’s first Chern
number νx1 , obtained by integrating the Berry curva-
ture Ωx(kx, ϕx) = i (〈∂ϕxu|∂kxu〉 − 〈∂kxu|∂ϕxu〉) over the
generalized 2D Brillouin zone spanned by the quasimo-
mentum kx and ϕx. Here, |u(kx, ϕx)〉 denotes the eigen-
state of a given non-degenerate band at kx and ϕx. As
νx1 can only take integer values, the motion is quan-
tized [25]. The second term is the non-linear response
in the y-direction. It is quantified by a 4D integer
topological invariant, the pump’s second Chern number
ν2 = 1/(4π2)

∮
BZ

ΩxΩydkxdkydϕxdϕy, where BZ indi-
cates the generalized 4D Brillouin zone (Fig. 1e). There-
fore, the non-linear response is quantized as well and has
intrinsic 4D symmetries resulting from the higher-dimen-
sional non-commutative geometry.

We implement a 2D topological charge pump with
bosonic 87Rb atoms forming a Mott insulator in isolated
planes of a 3D optical lattice with superlattices along x
and y with ds ≡ ds,x = ds,y and dl ≡ dl,x = dl,y = 2ds (see
Methods), creating double well potentials along both x
and y (Fig. 1c). In the tight-binding limit, this realizes a
2D Rice-Mele model [27] in each plane with dimerized on-
site energies and tunnel couplings between neighbouring
sites in both directions (see Methods). The correspond-
ing unit cell is a four-site plaquette, ax = ay = 2ds, and
the lowest band splits into four subbands.

In the experiment, we study the non-linear bulk re-
sponse of the lowest subband, for which ν2 = +1 for
dl = 2ds. Our main results are (i) the first observation of
this novel 4D-like response, (ii) the local probing of its 4D
geometrical properties and (iii) revealing the 4D quantum
Hall effect by demonstrating the response’s quantization.
As the initial state, a quarter-filled Mott insulator uni-
formly occupying the lowest subband is prepared at ϕx =
0 (see Methods). The pumping is performed along x by
adiabatically varying ϕx and we examine the resulting
motion of the atoms. We locally probe the system with a
small atom cloud extending over approximately 20 sites
in the x-direction. In this case, the variation of Ωy(ϕy)
over the cloud size is negligible and the y-displacement
per cycle is given by Ω(ϕ

(0)
y ) θ (axay/dl) ey with Ω =

1/(2π)
∮

ΩxΩydkxdkydϕx (see Methods). From this lo-
cal response, the quantized non-linear response of an
infinite system can be reconstructed by sampling all
ϕ
(0)
y ∈ [0, 2π[, thereby integrating over the entire 4D Bril-

louin zone.
To probe the cloud’s motion, we measure its COM

position versus ϕx. As the non-linear response results
from two weak perturbations, the displacement per cycle
is typically only a fraction of dl. It is thus too small to
be resolved experimentally, where the number of cycles
is limited by heating. For suitable lattice parameters,
however, signatures of the non-linear drift – the key
feature of the 4D Hall effect – can be seen at ϕ(0)

y = π/2
(Fig. 2), where Ω is strongly peaked (c.f. Fig. 1e). Unlike
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Figure 2. 4D-type non-linear centre-of-mass (COM) re-
sponse. (a) COM of the atom cloud along y versus num-
ber of pump cycles along x measured for two different angles,
θ1 = 0.78(2) mrad (red) and θ2 = −0.85(2) mrad (blue) with
ϕ

(0)
y = 0.500(5)π. When pumping along x, the cloud moves

in the perpendicular y-direction with the sign depending on
the pumping direction and the sign of θ. ∆y is the differ-
ential displacement for Vs,x = 7.0(2)Er,s, Vs,y = 17.0(5)Er,s,
Vl,x = 20.0(6)Er,l and Vl,y = 80(3)Er,l compared to a ref-
erence sequence with Vs,y = 40(1)Er,s and Vl,y = 0Er,l (see
Methods). Here, Er,i = h2/(8mad

2
i ), i ∈ {s, l}, denotes the

corresponding recoil energy with ma being the mass of an
atom. Each point is averaged 100 times and the error bar
takes into account the error of the mean as well as a system-
atic uncertainty of ±0.3ds. (b) Difference of the COM drift
between θ1 and θ2 for the x- (grey) and y-direction (green),
∆rµ = ∆µ(θ1) − ∆µ(θ2) with µ ∈ {x, y}. The direction of
the non-linear response reverses when changing the sign of θ
whereas the linear response is independent of θ. Data points
are calculated from the measurements in (a) (see Methods).

the linear response, this motion depends on θ, demon-
strating its non-linear, intrinsically 4D character as the
result of two independent perturbations in orthogonal
subspaces. This constitutes the first observation of such
a dynamical transverse bulk phenomenon.

To quantify this non-linear response, we instead use
site-resolved band mapping, which measures the atom
number on even (Ne) and odd sites (No) along y. This
allows for the accurate determination of the average dou-
ble well imbalance, Iy = (No − Ne)/(No + Ne). If no
transitions between neighbouring unit cells along y oc-
cur, Iy is directly related to the COM motion (see Meth-
ods). An example for a measurement of Iy(ϕx) is shown
in Fig. 3a. The measured non-linear response is smaller
than expected for an ideal system due to the appear-
ance of doubly-occupied plaquettes and band excitations
along y during the pumping and a finite pumping ef-
ficiency along x (see Methods). Taking these imper-
fections into account, we find excellent agreement be-
tween the experimental data and the expected imbalance
(Fig. 3a). By performing a linear fit to the differential
double well imbalance Iy(ϕx)−Iy(−ϕx), we can extract
the change of the population imbalance during one cycle,
δIy = Iy(ϕx = 2π) − Iy(ϕx = 0) (see Methods). For a
homogeneously populated band, this slope is determined
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Figure 3. Local probing of the quantized non-linear bulk response for θ = 0.54(3) mrad. (a) Double well imbalance Iy versus
number of pump cycles in the x-direction at ϕ(0)

y = 0.500(5)π, Vs,x = Vs,y = 7.0(2)Er,s and Vl,x = Vl,y = 20.0(6)Er,l. The data
points are the average of 14 measurements for the point at ϕx = 0 and 7 measurements for all others; the error is the error of the
mean. The dashed line shows the response of an ideal system; the solid line includes corrections for the finite pumping efficiency
along x as well as the creation of doubly-occupied sites and band excitations along y. Both curves are shifted by a constant
offset I0 = 0.002 (see Methods). For simplicity, the theory curves assume a homogeneous Berry curvature Ωx = νx1 ax/(2π),
neglecting the variation of Ωx during a pump cycle. (b) The response of an infinite system can be reconstructed with a small
atom cloud by repeating the measurement from (a) for different values of ϕ(0)

y . A single measurement locally probes the response
at the cloud’s position (grey frames on the left). Changing ϕ(0)

y is equivalent to sampling a different position in the lattice
(magnified frames on the right). Note that the tilt of the long y-lattice is greatly exaggerated compared to the angle used in the
experiment. (c) Change of the double well imbalance per cycle for the lowest band, δIgs

y , as a function of ϕ(0)
y . It is determined

by the integrated Berry curvature Ω(ϕ
(0)
y ) and thus exhibits a pronounced peak around ϕ(0)

y = π/2 (see Fig. 1e and Methods).
The slope δIgs

y is extracted from a fit to the measured imbalance Iy(ϕx) (see Methods) and the solid line is the theoretically
expected slope. Error bars show the fit error and the blue-shaded region indicates the uncertainty of the theory curve resulting
from the errors of θ and the lattice depths. The insets show two additional examples of individual measurements of Iy(ϕx) as
in (a).

by Ω and thus characterizes the system’s transport prop-
erties.

To reconstruct the quantized response of an infinite
system and thereby obtain ν2, the measurement of Iy(ϕx)

is repeated for different ϕ(0)
y . This corresponds to using

the small atom cloud as a local probe at different posi-
tions along x (Fig. 3b). To demonstrate the quantiza-
tion of the non-linear response, we determine the second
Chern number of the lowest subband by averaging δIy
over ϕ(0)

y ∈ [0, 2π[. For symmetry reasons, it is sufficient
to restrict ϕ(0)

y to [0, π[ for dl = 2ds (see Methods). In
this interval, the non-linear response has significant con-
tributions only in the vicinity of ϕ(0)

y = π/2. For the
range of data shown in Fig. 3c, this gives νexp2 = 0.8(2)
with the error resulting from the fit error and the un-
certainty of θ. Taking the above mentioned eperimental
imperfections into account allows us to isolate the con-
tribution from the lowest subband δIgsy (see Methods).
The experimentally determined slope of the non-linear
response for ground state atoms agrees very well with
the one expected in an ideal system (Fig. 3c). To deter-
mine νexp2 , the ideal slope is fitted to the measured one by
scaling it with a global amplitude, (νexp2 /ν2) δIgsy (ϕ

(0)
y ).

This yields νexp2 = 1.07(8), in agreement with the ex-

pected value ν2 = +1. The error additionally takes into
account the uncertainties in the lattice depths.

In the 4D QH system, the defining feature of the non-
linear response is its linear dependence on the magnetic
perturbation. The same scaling is thus expected for the
2D charge pump with respect to θ. We verify this by mea-
suring the peak slope δIgsy at ϕ(0)

y = π/2 versus θ (Fig. 4).
This provides another way to obtain the second Chern
number by determining the slope of δIgsy (θ) (see Meth-
ods). A linear fit gives νexp2 = 1.01(8), where the error is
determined as described above. Furthermore, we confirm
that the peak slope at fixed θ scales with the depth of
the short y-lattice Vs,y as expected (see Extended Data
Fig. 1 and Methods). In particular, the direction of the
non-linear response is independent of Vs,y, indicating its
robustness against perturbations of the system.

In conclusion, we presented the first observation of a
dynamical 4D QH effect, opening the route to experi-
mentally studying higher-dimensional QH physics. Ex-
tending our work, additional density-type non-linear re-
sponses implied by a 2D charge pump’s intrinsic 4D sym-
metry can be measured [6]. By adding a spin-dependent
Yang-Mills gauge field, a dynamical version of the time-
reversal symmetric 4D QH effect, which exhibits a ground
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Figure 4. Scaling of the 4D-type response with the tilt angle
θ. The linear dependence on θ reveals the non-linear charac-
ter of the response, demonstrating that it is induced by two
independent perturbations dϕx/dt and θ. The slope δIgs

y is
determined as a function of θ at ϕ(0)

y = 0.500(5)π by mea-
suring the double well imbalance when pumping along x as
described in Fig. 3 and using the same lattice depths. The
solid line shows the slope expected for an ideal system. The fit
errors for δIgs

y are smaller than the size of the data points and
the insets show two examples for the measurement of Iy(ϕx)
as in Fig. 3a.

state with SO(5) symmetry, could be realized [6]. Includ-
ing interactions may yield intriguing fractional phases
originating in the 4D fractional QH effect [4], similar
to previous proposals for 1D charge pumps [28]. Ad-
ditionally, it might allow for studying open questions
in the context of Floquet engineering [15]. Going be-
yond the limit of weak perturbations, quantized electric
quadrupole moments could be observed in spatially frus-
trated systems with θ = π/4 [29]. Furthermore, a QH
system with four extended dimensions might be realized
with cold atoms [20] using recently demonstrated tech-
niques for creating synthetic dimensions [18, 19]. In fi-
nite systems, this would permit the observation of novel
boundary phenomena such as isolated Weyl points [30].
Ultimately, the ability to experimentally realize 4D QH
systems might provide insight into lattice QCD models
based on the Yang-Mills theory [7] and even quantum
gravity [4].

Note: Simultaneously with this work, complementary
results on topological edge states in 2D photonic pumps
have been obtained [O. Zilberberg et al., to be published].
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METHODS

Hall response of the 4D quantum Hall system. As-
suming perfect adiabaticity, the Hall response of the 4D sys-
tem shown in Fig. 1a, b can be evaluated from the semiclassi-
cal equations of motion for a wave packet centred at position
r and quasimomentum k [31]:

ṙµ =
1

~
∂E(k)

∂kµ
+ k̇ν Ωνµ(k) (2)

~k̇µ = qEµ + qṙνBµν (3)

Here, E(k) is the energy of the respective eigenstate at k,
q the charge of the particle and the Einstein notation is
used for the spatial indices µ, ν ∈ {w, x, y, z}. Note that
the orientation of the axes in Fig. 1a, b is chosen such
that the 4D Levi-Civita symbol is εwxyz = +1. The veloc-
ity of the wave packet v = ṙ has two contributions: the
group velocity arising from the dispersion of the band and
the anomalous velocity due to the non-zero Berry curvature
Ωνµ(k) = i

(〈
∂kνu|∂kµu

〉
−
〈
∂kµu|∂kνu

〉)
. For a filled or ho-

mogeneously populated band, the group velocity term van-
ishes and with E = Ezez and B = 0, the linear Hall response
is given by the COM velocity

v
(0)
COM =

q

h
AxzMEzν

zx
1 ex (4)

where AxzM denotes the size of the magnetic unit cell and
νzx1 = 1/(2π)

∮
BZ

Ωzx d2k the first Chern number of the 2D
QH system in the xz-plane. The integration is performed
over the 2D Brillouin zone spanned by kx and kz.

Adding the perturbing magnetic field Bxw generates a
Lorentz force acting on the moving cloud, ~k̇ = qEz ez −
qv

(0)
x Bxw ew [20]. Note that this additional force can alterna-

tively be interpreted as arising from a Hall voltage in the w-
direction that is created by the current along x in the presence
of Bxw. This force in turn induces an additional anomalous
velocity along y, giving rise to the non-linear Hall response.
The resulting average velocity is then

vCOM =
q

h
AxzMEzν

zx
1 ex −

( q
h

)2

AM EzBxwν2 ey (5)

with AM being the size of the 4D magnetic unit cell. The
second Chern number is given by ν2 = 1/(4π2)

∮
BZ

ΩxwΩzy +

ΩxyΩwz + ΩzxΩwyd4k, where BZ denotes the 4D Brillouin
zone.
Tight-binding Hamiltonian of the 2D superlattice.

In the tight-binding limit, the motion of non-interacting
atoms in a 2D superlattice is captured by the following Hamil-
tonian:
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Ĥ2D(ϕx, ϕy) = (6)

−
∑

mx,my

[Jx(ϕx) + δJmxx (ϕx)] â†mx+1,my
âmx,my + h.c.

−
∑

mx,my

[
Jy(ϕy) + δJ

my
y (ϕy)

]
â†mx,my+1âmx,my + h.c.

+
∑

mx,my

[
∆mx
x (ϕx) + ∆

my
y (ϕy)

]
â†mx,my âmx,my

Here, â†mx,my (âmx,my ) is the creation (annihilation) operator
acting on the (mx,my)-th site in the xy-plane. The first (sec-
ond) term describes the hopping between neigbouring sites
along the x-axis (y-axis) with the tunneling matrix elements
Jµ + δJ

mµ
µ , µ ∈ {x, y}. The last term contains the on-site

potential of each lattice site, ∆mx
x + ∆

my
y . In the presence of

the long lattices, the tunnel couplings as well as the on-site
energies are modulated periodically by δJmµµ and ∆mx

x +∆
my
y ,

respectively, both of which depend on the respective super-
lattice phase ϕµ.

For the lattice configuration used in the experiment,
where dl,µ = 2ds,µ, these modulations can be expressed as
(−1)mµδJµ/2 and (−1)mµ∆µ/2 and Eq. (6) reduces to the
2D Rice-Mele Hamiltonian [27]:

Ĥ2D(ϕx, ϕy) = (7)

−
∑

mx,my

[Jx(ϕx) + (−1)mxδJx(ϕx)/2] â†mx+1,my
âmx,my + h.c.

−
∑

mx,my

[Jy(ϕy) + (−1)myδJy(ϕy)/2] â†mx,my+1âmx,my + h.c.

+
∑

mx,my

1

2
[(−1)mx∆x(ϕx) + (−1)my∆y(ϕy)] â†mx,my âmx,my

Mapping of a 2D topological charge pump to a 4D
quantum Hall system. The Hamiltonian of a 2D topo-
logical charge pump for a given set of parameters {ϕx, ϕy},
Ĥ2D(ϕx, ϕy), can be interpreted as a Fourier component of
a higher-dimensional quantum Hall system. Using the ap-
proach of dimensional extension [22], a 2D charge pump can
be mapped onto a 4D QH system, whose Fourier compo-
nents are sequentially sampled during a pump cycle. This
is demonstrated in the following for the deep tight-binding
limit Vs,µ � V 2

l,µ/(4Er,s), µ ∈ {x, y}, where the correspond-
ing 4D system consists of two 2D Harper-Hofstadter-Hatsugai
models [32–35] in the xz- and yw-plane. A similar analogy
can be made in the opposite limit of vanishing short lattices,
Vs,x → 0 and Vs,y → 0. In this case, each axis of the 2D
lattice maps onto the Landau levels of a free particle in an
external magnetic field in 2D [25]. For the lowest band, these
two limiting cases are topologically equivalent, i.e. they are
connected by a smooth crossover without closing the gap to
the first excited band. The topological invariants governing
the linear and non-linear response are thus independent of the
depth of the short lattices.

In the deep tight-binding regime, Jx and Jy become inde-
pendent of the superlattice phases and the modulations can
be approximated as

δJmxx (ϕx) = −δJ
(0)
x

2
sin
(

Φ̃xzmx − ϕx
)

(8)

δJ
my
y (ϕy) = −δJ

(0)
y

2
sin
(

Φ̃ywmy − ϕy
)

(9)

∆mx
x (ϕx) =

∆
(0)
x

2
sin
(

Φ̃xz(mx − 1/2)− ϕx
)

(10)

∆
my
y (ϕy) =

∆
(0)
y

2
sin
(

Φ̃yw(my − 1/2)− ϕy
)

(11)

with Φ̃xz = 2πds,x/dl,x and Φ̃yw = 2πds,y/dl,y. In this case,
Ĥ2D is equivalent to the generalized 2D Harper model [32, 36],
which describes the Fourier components of a 4D lattice model
with two uniform magnetic fields in orthogonal subspaces.
The 4D parent Hamiltonian can be obtained by performing
an inverse Fourier transform [6]

Ĥ4D =
1

4π2

∫ 2π

0

Ĥ2D(ϕx, ϕy)dϕxdϕ(0)
y (12)

with
â†mx,my =

∑
mz ,mw

ei(ϕxmz+ϕ
(0)
y mw)â†m (13)

âmx,my =
∑

mz ,mw

e−i(ϕxmz+ϕ
(0)
y mw)âm (14)

where m = {mx,my,mz,mw} indicates the position in the
4D lattice. This yields

Ĥ4D = Ĥxz + Ĥyw + ĤδJ (15)

The first term Ĥxz describes a 2D Harper-Hofstadter
model [32–34] in the xz-plane with a uniform magnetic flux
per unit cell Φxz = Φ0Φ̃xz/(2π) = ds,x/dl,x Φ0 with Φ0 denot-
ing the magnetic flux quantum:

Ĥxz =−
∑
m

Jxâ
†
m+ex

âm + h.c. (16)

−
∑
m

∆
(0)
x

4
ei[Φ̃xz(mx−1/2)+π/2]â†m+ez

âm + h.c.

Correspondingly, the second term Ĥyw is an independent
2D Harper-Hofstadter model in the yw-plane with Φyw =
ds,y/dl,y Φ0. Due to the position dependence of the transverse
superlattice phase ϕy, it also contains the magnetic perturba-
tion, i.e. a weak homogeneous magnetic field in the xw-plane:
Ĥyw = (17)

−
∑
m

Jyâ
†
m+ey

âm + h.c.

−
∑
m

∆
(0)
y

4
ei[Φ̃yw(my−1/2)+Φ̃xwmx+π/2]â†m+ew

âm + h.c.

with Φ̃xw = −2πθds,x/dl,y. The strength of the perturbing
magnetic field is thus given by

Bxw = − Φ0

ds,wdl,y
θ (18)

where ds,w is the lattice spacing along w. For δJ(0)
µ 6= 0,

the third contribution ĤδJ leads to the appearance of addi-
tional diagonal tunnel coupling elements in the xz- and yw-
plane with an amplitude of δJ(0)

x /4 and δJ(0)
y /4, respectively.
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The individual 2D models without the magnetic perturba-
tion Bxw then correspond to the Harper-Hofstadter-Hatsugai
model [35] with a uniform magnetic flux Φxz and Φyw, re-
spectively, i.e. the same flux as for δJ(0)

µ = 0.
Transport properties of a 2D topological charge

pump. When the pump parameter ϕx is changed
slowly, a particle that is initially in an eigenstate
|u(kx, ϕx(t = 0), ky, ϕy)〉 of the 2D superlattice Hamiltonian
Ĥ2D [Eq. (6)] will adiabatically follow the corresponding in-
stantaneous eigenstate |u(kx, ϕx(t), ky, ϕy)〉. In absence of
a tilt, θ = 0, the particle acquires an anomalous velocity
Ωx∂tϕxex during this evolution, analogous to the linear Hall
response in a QH system. In this case, the Berry curvature Ωx

is defined in a 4D generalized Brillouin zone (kx, ϕx, ky, ϕy):

Ωx(kx, ϕx, ky, ϕy) = i (〈∂ϕxu|∂kxu〉 − 〈∂kxu|∂ϕxu〉) (19)

For a homogeneously populated band, the COM displacement
along x during one cycle, obtained by integrating the average
anomalous velocity over one period, can be expressed as an
integral of the Berry curvature over the 2D generalized Bril-
louin zone spanned by kx and ϕx. It is thus determined by
the pump’s first Chern number

νx1 =
1

2π

∮
Ωx dkxdϕx (20)

When a tilt is present, θ 6= 0, this motion along x leads to
a change in ϕy. This induces an additional anomalous veloc-
ity in the y-direction, giving rise to the non-linear response.
Neglecting the contribution from the group velocity (which
averages to zero for a homogeneously populated band), we
obtain for a given eigenstate:

vy(kx, ϕx, ky, ϕy) = Ωy∂tϕy =
2π

dl,y
θΩxΩy∂tϕx (21)

The distribution of ΩxΩy in the 4D generalized Brillouin
zone is shown in Fig. 1e for the lattice parameters used
for the measurements in Fig. 3 and 4 of the main text. It
exhibits a pronounced peak around ϕx ∈ {π/2, 3π/2} and
ϕy ∈ {π/2, 3π/2}. ΩxΩy is π-periodic in both ϕx and ϕy as
the corresponding eigenstates are related by a gauge transfor-
mation due to the translational symmetry of the superlattice
potential [37].

For a small cloud that homogeneously populates a single
band as in the experiment, the variation of ΩxΩy over the size
of the cloud Lx along x due to the position dependence of ϕy is
negligible for Lx � dl,y/θ. The average velocity for the non-
linear response can then be calculated by averaging Eq. (21)
over both quasimomenta kx and ky. The COM displacement
after a complete cycle can be determined by integrating the
velocity over one period. We can thus express the change in
the COM position per cycle as

δyCOM =
1

2π

∮
ΩxΩy dkxdkydϕx︸ ︷︷ ︸

Ω(ϕy)

θ
ax
dl,y

ay (22)

If the number of pump cycles is small, the change of ϕy as a
result of the linear pumping response can be neglected and the
non-linear displacement per cycle is very well approximated
by δyCOM ≈ Ω(ϕ

(0)
y ) θ axay/dl,y.

The response of a large system with size Lx � dl,y/θ can be
obtained by averaging Eq. (22) over ϕy(x) ∈ [0, 2π[, yielding

δyCOM =
1

2π

∮
Ω(ϕy) θ

ax
dl,y

ay dϕy = ν2 θ
ax
dl,y

ay (23)

where the second Chern number ν2 is calculated by integrat-
ing ΩxΩy over the entire 4D generalized Brillouin zone:

ν2 =
1

4π2

∮
BZ

ΩxΩydkxdkydϕxdϕy (24)

Note that in order to probe the intrinsic transport prop-
erties of the unperturbed system, both fields generating the
response have to be small perturbations such that the evo-
lution remains adiabatic and the energy gap to the excited
subbands remains open, which protects the topological in-
variants. Nonetheless, going beyond this limit can give rise to
additional exciting phenomena. For example, a configuration
with θ = π/4 can lead to spatial frustration and the resulting
model might allow for the observation of quantized electric
quadrupole moments similiar to the proposal in [29].
Pump path. Varying the pump parameter ϕx periodically

modulates the tight-binding parameters δJx(ϕx) and ∆x(ϕx)
describing the superlattice along x [Eq. (6)]. For dl = 2ds,
the modulation of δJx and ∆x is out of phase and the sys-
tem therefore evolves along a closed trajectory in the δJx–∆x

parameter space (Extended Data Fig. 2a). This pump path
encircles the degeneracy point (δJx = 0, ∆x = 0), where
the two lowest subbands of the Rice-Mele model touch. This
singularity can be interpreted as the source of the non-zero
Berry curvature Ωx in the generalized Brillouin zone, which
gives rise to the linear pumping response. All pump paths
that encircle the degeneracy can be continuously transformed
into one another without closing the gap to the first excited
subband and are thus topologically equivalent with respect to
the linear response, i.e. the value of νx1 does not change.

Similarly, the tight-binding parameters δJy and ∆y depend
on the phase of the transverse superlattice ϕy. For a large
cloud, all possible values of ϕy and thus δJy and ∆y are sam-
pled simultaneously (Extended Data Fig. 2b). During a pump
cycle, the system therefore traces out a closed surface in the
4D parameter space of δJx, ∆x, δJy and ∆y (Extended Data
Fig. 2c). In this parameter space, the two lowest subbands
touch in the two planes (δJx = 0, ∆x = 0) and (δJy = 0,
∆y = 0), which intersect in a single point at the origin (Ex-
tended Data Fig. 2d). Analogous to the linear response, this
degeneracy generates the non-zero Berry curvatures Ωx and
Ωy, which cause the non-linear motion in the y-direction. Due
to the 4D character of the parameter space, the 4D pump path
can enclose the degeneracy (Extended Data Fig. 2e). When-
ever this is the case, the topology of the cycle does not change
and the value of ν2 remains the same.

To visualize the pump path in the 4D parameter space in
Extended Data Fig. 2, we apply the following transformation:

r1

r2

r3

r4

 =
1

4


1 1 −1 −1
1 1 1 1
1 −1 −1 1
1 −1 1 −1

 ·

δJx/δJ

(0)
x

∆x/∆
(0)
x

δJy/δJ
(0)
y

∆y/∆
(0)
y

 (25)

where the tight-binding parameters are normalized by their
respective maximum values. The degeneracy planes are then
given by r1 = −r2, r3 = −r4 and r1 = r2, r3 = r4, respec-
tively, i.e. they become perpendicular planes in the (r1, r2, r3)-
space.
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Lattice configuration. All experiments are performed in
a mutually orthogonal retro-reflected 3D optical lattice con-
sisting of superlattices along x and y and a simple lattice
in the z-direction. Each superlattice is created by superim-
posing two standing waves, a short lattice with wavelength
λs = 767 nm and a long lattice with λl = 2λs. The vertical
lattice along z is formed by a standing wave with λz = 844 nm.
Initial state preparation for band-mapping mea-

surements. For all sequences, a quarter-filled Mott insula-
tor consisting of about 5000 87Rb atoms is prepared with one
atom localized in the ground state of each unit cell, creating
a uniform occupation of the lowest subband in the 2D su-
perlattice. To this end, a Bose-Einstein condensate is loaded
from a crossed dipole trap into the lattice by first ramping
up the blue-detuned short lattices along x and y to 3.0(1)Er,s

during 50ms to lower the initial density of the atom cloud.
Then these lattices are switched off again within 50ms while
at the same time the vertical lattice as well as both long lat-
tices are increased to 30(1)Er,z and 30(1)Er,l, respectively,
with ϕx = 0.000(5)π and ϕy = ϕ

(0)
y . Subsequently, doubly-

occupied lattice sites are converted to singly-occupied ones
(see below), creating a Mott insulator with unit filling and a
negligible fraction of doublons. Afterwards, each lattice site is
split to a four-site plaquette by ramping up the short lattices
along x and y to their final depth of 7.0(2)Er,s and decreasing
the long lattices to 20.0(6)Er,l within 5ms.
Removal of doubly-occupied sites. After preparing

the Mott insulator with unit filling in the long lattices, sites
containing two atoms are converted to singly-occupied ones
using microwave-dressed spin-changing collisions and a res-
onant optical push-out pulse [38, 39]. For this, the lattice
depths are increased to Vs,x = 70(2)Er,s, Vl,x = 30(1)Er,s,
Vl,y = 70(2)Er,l and Vz = 100(3)Ez in 5ms to maximize
the on-site interaction energy. The atoms, which are initially
in the (F = 1,mF = −1) hyperfine state, are converted to
(F = 1,mF = 0) with an adiabatic radio-frequency trans-
fer. Here, F denotes the total angular momentum of the
atoms. By ramping a magnetic offset field in the presence of
a microwave field, a Landau-Zener sweep is performed that
adiabatically converts pairs of mF = 0 atoms on the same
lattice site to an mF = +1 and an mF = −1 atom via co-
herent spin-changing collisions. Subsequently, the mF = −1
atoms are removed by an adiabatic microwave transfer to
(F = 2,mF = −2) followed by a resonant optical pulse af-
ter lowering the lattices to Vs,x = 0Er,s, Vl,x = 30(1)Er,l,
Vl,y = 40(1)Er,l and Vz = 40(1)Ez.
Sequence for pumping. The superlattice phase can be

controlled by slightly changing the frequency of the lasers used
for generating the long lattices and thereby moving the rel-
ative position between the short and long lattice at the po-
sition of the atoms. The pumping along x is performed by
slowly changing ϕx, starting from the staggered configura-
tion at ϕx = 0.000(5)π, where the energy difference between
neighbouring sites |∆x| is largest and the tunnel couplings
are equal, δJx = 0. To minimize non-adiabatic transitions
to higher bands, each pump cycle consists of three s-shaped
ramps ϕx ∈ [0, 0.5π] , [0.5π, 1.5π] and [1.5π, 2π]. This reduces
the ramp speed in the vicinity of the symmetric double well
configuration (∆x = 0) at ϕx = (l + 1/2)π, l ∈ Z, where
the gap to the first excited band is smallest. The duration
of the π/2 ramps is 7ms and 14ms for the ramp by π. Due
to the limited tuning range of a single laser, a second laser
is required for implementing multiple pump cycles, which is

set to a constant phase of ϕx = 0.000(5)π. At the end of
each cycle, an instantaneous switch from the primary laser to
the second one is made and within 5ms the frequency of the
former is ramped back to its initial value — corresponding to
an identical lattice configuration. After switching back to the
first laser, the next cycle continues as described above. We
checked experimentally that this handover between the two
lasers does not create any measurable band excitations.
Measurement of the in-situ position. To deter-

mine the non-linear COM displacement along y, a double-
differential measurement is conducted to minimize the effect
of shot-to-shot fluctuations of the atom position. In order to
do this, the COM position is measured before (yi) and af-
ter the pumping (yf) and compared to a reference sequence
(y(0)

i , y(0)
f ). In the latter, the pumping is performed with

only the short lattice along y (at Vs,y = 40(1)Er,s) and there-
fore the non-linear response is zero. The initial position is
obtained during the doublon removal sequence, where the
atoms are initially prepared in the (F = 1,mF = 0) hy-
perfine state and one atom from each doubly-occupied site
is transferred to (F = 2,mF = −2) using microwave-dressed
spin-changing collisions (see above). In addition, we trans-
fer 50% of the atoms on singly-occupied sites to the F = 2
manifold as well by applying a microwave π-pulse resonant
on the (F = 1,mF = 0) → (F = 2,mF = 0) transition.
The F = 2 atoms thus have the same density distribution
as the remaining F = 1 atoms and are imaged prior to the
push-out pulse, which removes them from the lattice. The
motion of the atoms due to the non-linear response is then
given by ∆y = (yf − yi)− (y

(0)
f − y(0)

i ). The difference of the
COM displacement along y between θ1 and θ2 is defined as
∆ry = ∆y(θ1) − ∆y(θ2). For the x-direction, it is obtained
directly from ∆x = (xf−xi)−δx without comparing it to the
reference sequence. Here, δx is the average displacement of all
data points for a given angle, accounting for a small constant
offset between the measured initial and final positions.
Relation between centre-of-mass position and dou-

ble well imbalance. If there are no inter-double-well tran-
sitions along y, the change in the double well imbalance
δIy = Iy(ϕx)−Iy(ϕx = 0) can be directly related to the COM
motion along y. The COM position in the y-direction is given
by yCOM = dl/N

∑
ij [(j − 1/4)Ne,ij + (j + 1/4)No,ij ], where

the sum is over all unit cells, Ne,ij (No,ij) is the occupation of
the even (odd) sites along y in the (i, j)-th unit cell and N is
the total atom number. Expressing this in terms of the total
number of atoms on even and odd sites, Ne =

∑
ij Ne,ij and

No =
∑
ij No,ij , and assuming that there are no transitions

between neighbouring unit cells along y, i.e.
∑
iNe,ij +No,ij

remains constant, the change in the COM position can be
written as δyCOM = yCOM(ϕx) − yCOM(ϕx = 0) = dl δIy/4.
Note that this derivation implicitly assumes that the COM of
the maximally-localized Wannier functions on the lattice sites
along y is independent of ϕy, which is a valid approximation
deep in the tight-binding regime. Otherwise, the proportion-
ality factor dl/2 has to be replaced by the distance between
the COM of the Wannier functions on the even and odd site
of a double well.
Direct determination of the second Chern number.

To directly determine the second Chern number from the mea-
sured double well imbalance Iy(ϕx), the average change of the
imbalance per cycle for the entire cloud, δIy(ϕ

(0)
y ), is obtained

from a linear fit of the differential imbalance Iy(ϕx)−Iy(−ϕx)

for each value of ϕ(0)
y . The influence of the excitations can be
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reduced by restricting the fitting region to a small number
of pump cycles. The response of an infinite system is recon-
structed by averaging δIy(ϕ

(0)
y ) over ϕ(0)

y using linear inter-
polation between the data points. When taking into account
all points with ϕx/(2π) ≤ 3, this gives νexp

2 = 0.84(17) for
the data from Fig. 3. Note that the linear interpolation for
the discrete sampling used in Fig. 3c leads to a systematic
shift of νexp

2 by +0.05. When correcting for the finite pump-
ing efficiency along x (see below), which can be measured
independently without prior knowledge about the system, we
obtain νexp

2 = 0.94(19).
Model for double well imbalance including experi-

mental imperfections. To isolate the non-linear response
of the lowest band from the band mapping data, we use a
simple model that takes into account band excitations and
double occupation of plaquettes and the experimental pump-
ing efficiency of the linear response. The average double well
imbalance Iy(ϕx) can be written as

Iy(ϕx) = ngsIgs
y (ϕy) + nexcIexc

y (ϕy) + n2I2,gs
y (ϕy) (26)

where ngs (nexc) is the fraction of atoms on singly-occupied
plaquettes in the ground (first excited) state along y and
n2 is the fraction of atoms on doubly-occupied plaquettes,
which we assume to be in the ground state. These quanti-
ties can be determined experimentally at each point in the
pumping sequence. Igs

y , Iexc
y and I2,gs

y denote the imbal-
ance of the corresponding state, which depends on the lo-
cal phase of the y-superlattice at the position of the cloud
along x, ϕy(xCOM). The imbalance curves can be calcu-
lated theoretically using the respective double well Hamil-
tonian Eq. (27) or Eq. (28) and can be obtained exper-
imentally by studying the linear pumping response. The
COM position in turn depends on the pump parameter ϕx
and includes corrections for the finite pumping efficiency,
xCOM(ϕx) = sgn(ϕx)

∑|ϕx|/π
i=1

(
2β0β

i − β
)
ds for ϕx/π ∈ Z.

Here, β0 = 0.980(4) is the initial ground state occupation
along x and β = 0.986(2) is the pumping efficiency, given
by the fraction of atoms that remain in the lowest subband
during each half of a pump cycle and are thus transferred
by one lattice site along x. The main contributions limiting
the pumping efficiency are band excitations in the pumping
direction as well as non-adiabatic transitions between neigh-
bouring double wells induced by the external harmonic con-
finement. Note that while the local slope of the transverse
response for doubly-occupied plaquettes differs from the one
for single atoms, they exhibit the same quantized transport
along both x and y for the parameters used in the experiment
when covering the entire 4D pump path.
Measurement of band excitations. Band excitations

in the y-direction are measured by adiabatically ramping the
superlattice phase ϕ(0)

y from its initial value to π/2±0.156(5)π
and subsequently increasing the short lattice depth to Vs,y =
40(1)Er,s. In this lattice configuration, ground state atoms
on both singly- and doubly-occupied plaquettes are fully lo-
calized on the lower-lying site along y due to the large double
well tilt ∆y and the suppression of tunnelling as Jy, δJy → 0.
Atoms in the excited band along y, on the other hand, local-
ize on the higher-lying site and can be detected directly by
measuring the resulting double well imbalance.
Detection of doubly-occupied plaquettes. The dou-

blon fraction can be determined by taking advantage of the
fact that two atoms in the same double well localize on the
lower-lying site only at much larger double well tilts than a

single atom due to the repulsive on-site interaction. For this,
the double wells along y are first merged to a single site by
removing the short lattice and increasing the long lattice to
Vl,y = 30(1)Er,l within 5ms. At the same time, the orthog-
onal lattice depths are ramped up to Vs,x = 70(2)Er,s and
Vz = 100(3)Er,z to increase the interaction energy. After that,
ϕ

(0)
y is shifted adiabatically to either 0.474(5)π or 0.431(5)π

and the sites are split into double wells again by ramping up
the short lattice to Vs,y = 40(1)Er,s. At ϕ(0)

y = 0.431π, both
single atoms and doublons are fully localized on the lower-
lying site. At ϕ(0)

y = 0.474π, on the other hand, single atoms
are still very well localized on the lower site, but two atoms in
the same double well localize on different sites due to the large
interaction energy U > ∆y. By determining the site occupa-
tions for both phases, one can thus infer the doublon fraction
from the difference in the even-odd imbalance between the
two measurements.
Calculation of the double well imbalance along y.

The measurement of the population imbalance in the y-
direction as a function of ϕx for Fig. 3 and 4 of the main
text is performed after an integer or half-integer number of
pump cycles, i.e. ϕx = lπ, l ∈ Z. At these points, the su-
perlattice along x is in the staggered configuration with the
maximum energy offset |∆x| � Jx and δJx = 0. The atoms
are thus fully localized on either even or odd sites along x for
ϕx = 2lπ or ϕx = (2l + 1)π, respectively. The four-site unit
cell of the 2D superlattice therefore effectively reduces to a
double well along y.

For singly-occupied double wells, the expected imbalance in
the y-direction for atoms in the ground (Igs

y ) and first excited
state (Iexc

y ) can then be calculated from the single-particle
double well Hamiltonian:

Ĥ
(1)
DW(ϕy) =

(
∆y(ϕy)/2 −J0

y (ϕy)
−J0

y (ϕy) −∆y(ϕy)/2

)
(27)

with J0
y (ϕy) = Jy(ϕy) + δJy(ϕy)/2 and using the Fock ba-

sis for the atom on the even and odd site, |1, 0〉 and |0, 1〉,
respectively.

Correspondingly, the imbalance for the ground state of a
doubly-occupied double well (I2,gs

y ) can be determined using
the two-particle double well Hamiltonian:

Ĥ
(2)
DW(ϕy) =

 U + ∆y −
√

2J0
y 0

−
√

2J0
y 0 −

√
2J0
y

0 −
√

2J0
y U −∆y

 (28)

in the Fock basis {|2, 0〉 , |1, 1〉 , |0, 2〉}. Here, U denotes the
on-site interaction energy for two atoms localized on the same
lattice site.
Fit function for non-linear response. Based on the

above model, the experimental data is fitted with the function
Iy(ϕx) + I0 with ϕy → ϕexp

y = ϕ
(0)
y + α (ϕy − ϕ(0)

y ). The two
fit parameters are the prefactor α, which describes the change
of the superlattice phase along y with ϕx compared to the
ideal case ϕexp

y = ϕy, and an overall offset I0. The transport
properties of the lowest band are encoded in the slope of the
ground state imbalance at ϕx = 0. Knowing α, it can be
related to the ideal slope via

∂Igs
y (ϕexp

y )

∂ϕx
=
∂Igs

y (ϕexp
y )

∂ϕexp
y

∂ϕexp
y

∂ϕx
= α

∂Igs
y (ϕy)

∂ϕx
(29)

Per cycle, this gives a change of the population imbalance for
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ground state atoms of

δIgs
y = α

[
Igs
y (ϕy)

∣∣∣
ϕx=2π

− Igs
y (ϕy)

∣∣∣
ϕx=0

]
(30)

Determination of the second Chern number from
scaling of the non-linear response with θ. The COM dis-
placement per cycle along y for an infinite system, δyCOM =
ν2θaxay/dl,y, scales linearly with the perturbing angle θ. The
second Chern number can thus be extracted from the slope
of δyCOM(θ). Having confirmed that the measured shape of
δIgs
y (ϕ

(0)
y ) is the same as expected theoretically, the response

of an infinite system at a given angle θ can be inferred from
a single measurement of δIgs

y at a fixed ϕ(0)
y . This holds for

all angles since the shape of Ω(ϕ
(0)
y ) is independent of θ. To

obtain ν2, it is therefore sufficient to determine the slope of
δIgs
y (θ) at a constant ϕ(0)

y .
Non-linear response versus lattice depth. The tech-

nique for detecting the non-linear response with site-resolved
band mapping introduced in the main text allows us to ac-
curately determine the slope over a wide range of lattice pa-
rameters. To demonstrate this, we measure the slope of the
non-linear response at ϕ(0)

y = 0.500(5)π and θ = 0.54(3) mrad
for various values of the transverse short lattice depth Vs,y

(Extended Data Fig. 1). As expected, the slope increases
with larger depths as the band gap decreases and the Berry
curvature Ωy becomes more and more localized around ϕ(0)

y =
(l + 1/2)π with l ∈ Z.

At Vs,y = 6.25Er,s, the first and second excited subband
along y touch for ϕ(0)

y = lπ, leading to a topological transi-
tion where the signs of the first and second Chern number of
the first excited subband change from +1 for Vs,y < 6.25Er,s

to −1 for Vs,y > 6.25Er,s. This corresponds to a transition
between the Landau and Hofstadter regimes [25]. For the low-
est band, the two regimes are topologically equivalent and the
atoms thus move in the same direction. In both limits, the
experimentally determined slope matches very well with the
one expected in an ideal system. This nicely illustrates that
the transport properties of the lowest band can be extracted
correctly in both regimes, even in the presence of atoms in
the first excited band.
Alignment of the tilted superlattice. Each optical

lattice is created by retroreflecting a laser beam, which is
focussed onto the atoms by a lens on either side of the cloud.
For the superlattices, the incoming beams of the short and
long lattice are overlapped with a dichroic mirror in front of
the first lens. In order to control the tilt angle θ of the long
lattice along y, a glass block is placed in the beam path prior
to the overlapping. By rotating this glass block, a parallel
displacement of the incoming beam can be induced, which is
then converted into an angle θ relative to the short lattice
beam at the first lens. The two beams intersect at the focus
point of the lens, which corresponds to the position of the
atom cloud. After passing through the second lens behind
the cloud, both beams are retroreflected by the same mirror.
The counterpropagating beams travel along the paths of the
incoming beams, thereby creating the lattice potentials with
the same relative angle θ.
Determination of the angle θ. When the long lat-

tice in the y-direction is tilted by an angle θ with respect
to the short lattice, the phase of the superlattice along y de-
pends on the position along x. This leads to a modification
of the on-site potential, which for small angles can be ap-
proximated as a linear gradient along the x-axis, pointing in

opposite directions on even and odd sites in y: ∆
my
y (ϕy) ≈

∆
my
y (ϕ

(0)
y ) + (−1)myδ mx. The strength of the gradient is

given by δ = πds/dl ∂∆y/∂ϕy
∣∣
x=0

θ for a given superlattice
phase ϕ(0)

y and can thus be used to determine θ. In order to
do this in the experiment, a superfluid is prepared at k = 0
in a 2D lattice with Vs,x = 13.0(4)Er,s and Vl,y = 10.0(3)Er,l.
After increasing Vl,y to 70(2)Er,l within 0.2ms, the lattice
sites are split along y by ramping up the short lattice in the
y-direction to Vs,y = 20.0(6)Er,s in 0.4ms. The superlattice
phase ϕ(0)

y is set to either 0.344(5)π or 0.656(5)π such that the
atoms fully localize on even or odd sites along y, respectively.
The resulting Bloch oscillations induced by the gradient are
probed by measuring the momentum distribution of the atoms
after a variable hold time. The angle θ is then calculated from
the average Bloch oscillation period of both phases to mini-
mize the influence of additional residual gradients.
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Extended Data Figure 1. Slope of the non-linear response at
ϕ

(0)
y = 0.500(5)π and θ = 0.54(3) mrad versus short lattice

depth along y with all other lattice parameters as in Fig. 3
and 4 of the main text. J(0)

y = Jy(ϕ
(0)
y ) + δJy(ϕ

(0)
y )/2 with

ϕ
(0)
y = π/2 is the maximum intra-double-well tunnelling rate

along y, which is calculated from the corresponding lattice
depth. The solid line indicates the theoretically expected
slope and the error bars show the fit error for the slope. The
dashed line at Vs,y = 6.25Er,s marks the point at which a
topological transition occurs in the first excited subband along
y, indicating the transition between the Landau regime for
Vs,y < 6.25Er,s and the Hofstadter regime for Vs,y > 6.25Er,s.
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Extended Data Figure 2. Pump cycle of the 2D topological charge pump. The 4D tight-binding parameter space (δJx, ∆x, δJy,
∆y) is visualized using the transformation of Eq. (25). (a) Changing the pump parameter ϕx leads to a periodic modulation of
δJx and ∆x along a closed trajectory as shown in the inset for a full pump cycle ϕx = 0→ 2π. This pump path (green) encircles
the degeneracy point at the origin (grey), where the gap between the two lowest subbands of the Rice-Mele model closes. The
surface in the main plot shows the same trace transformed according to Eq. (25) and with ϕy ∈ [0.46π, 0.54π]. The spacing of the
mesh grid illustrating ϕx is π/10. (b) For a given ϕx, a large system simultaneously samples all values of ϕy. This corresponds
to a closed path in the δJy-∆y parameter space, where a singularity occurs at the origin as well (inset). The main plot shows
the transformed path for ϕx ∈ [0.46π, 0.54π]. (c) In a full pump cycle, such a system thus covers a closed surface in the 4D
parameter space by translating the path shown in (b) along the trajectory from (a). (d) In the transformed parameter space,
the singularities at (δJx = 0, ∆x = 0) and (δJy = 0, ∆y = 0) correspond to two planes that touch at the origin. (e) Cut around
r3 = 0 showing both the pump path from (c) (red/blue) as well as the singularities from (d) (grey). While they intersect in the
3D space (r1, r2, r3), the value of r4 is different on both surfaces and the 4D pump path thus fully encloses the degeneracy planes.
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