3,328 research outputs found

    Properties of galaxy dark matter halos from weak lensing

    Full text link
    We present the results of a study of weak lensing by galaxies based on 45.5 deg2^2 of RCR_C band imaging data from the Red-Sequence Cluster Survey (RCS). We present the first weak lensing detection of the flattening of galaxy dark matter halos. We use a simple model in which the ellipticity of the halo is ff times the observed ellipticity of the lens. We find a best fit value of f=0.77−0.21+0.18f=0.77^{+0.18}_{-0.21}, suggesting that the dark matter halos are somewhat rounder than the light distribution. The fact that we detect a significant flattening implies that the halos are well aligned with the light distribution. Given the average ellipticity of the lenses, this implies a halo ellipticity of =0.33−0.09+0.07=0.33^{+0.07}_{-0.09}, in fair agreement with results from numerical simulations of CDM. This result provides strong support for the existence of dark matter, as an isotropic lensing signal is excluded with 99.5% confidence. We also study the average mass profile around the lenses, using a maximum likelihood analysis. We consider two models for the halo mass profile: a truncated isothermal sphere (TIS) and an NFW profile. We adopt observationally motivated scaling relations between the lens luminosity and the velocity dispersion and the extent of the halo. The best fit NFW model yields a mass M200=(8.4±0.7±0.4)×1011h−1M⊙M_{200}=(8.4\pm0.7\pm0.4)\times 10^{11} h^{-1} M_\odot and a scale radius rs=16.2−2.9+3.6h−1r_s=16.2^{+3.6}_{-2.9} h^{-1} kpc. This value for the scale radius is in excellent agreement with predictions from numerical simulations for a halo of this mass.Comment: Significantly revised version, accepted for publication in ApJ 11 pages, 6 figure

    Robustness of Cosmological Simulations I: Large Scale Structure

    Full text link
    The gravitationally-driven evolution of cold dark matter dominates the formation of structure in the Universe over a wide range of length scales. While the longest scales can be treated by perturbation theory, a fully quantitative understanding of nonlinear effects requires the application of large-scale particle simulation methods. Additionally, precision predictions for next-generation observations, such as weak gravitational lensing, can only be obtained from numerical simulations. In this paper, we compare results from several N-body codes using test problems and a diverse set of diagnostics, focusing on a medium resolution regime appropriate for studying many observationally relevant aspects of structure formation. Our conclusions are that -- despite the use of different algorithms and error-control methodologies -- overall, the codes yield consistent results. The agreement over a wide range of scales for the cosmological tests is test-dependent. In the best cases, it is at the 5% level or better, however, for other cases it can be significantly larger than 10%. These include the halo mass function at low masses and the mass power spectrum at small scales. While there exist explanations for most of the discrepancies, our results point to the need for significant improvement in N-body errors and their understanding to match the precision of near-future observations. The simulation results, including halo catalogs, and initial conditions used, are publicly available.Comment: 32 pages, 53 figures, data from the simulations is available at http://t8web.lanl.gov/people/heitmann/arxiv, accepted for publication in ApJS, several minor revisions, reference added, main conclusions unchange

    Electrical Control of 2D Magnetism in Bilayer CrI3

    Full text link
    The challenge of controlling magnetism using electric fields raises fundamental questions and addresses technological needs such as low-dissipation magnetic memory. The recently reported two-dimensional (2D) magnets provide a new system for studying this problem owing to their unique magnetic properties. For instance, bilayer chromium triiodide (CrI3) behaves as a layered antiferromagnet with a magnetic field-driven metamagnetic transition. Here, we demonstrate electrostatic gate control of magnetism in CrI3 bilayers, probed by magneto-optical Kerr effect (MOKE) microscopy. At fixed magnetic fields near the metamagnetic transition, we realize voltage-controlled switching between antiferromagnetic and ferromagnetic states. At zero magnetic field, we demonstrate a time-reversal pair of layered antiferromagnetic states which exhibit spin-layer locking, leading to a remarkable linear dependence of their MOKE signals on gate voltage with opposite slopes. Our results pave the way for exploring new magnetoelectric phenomena and van der Waals spintronics based on 2D materials.Comment: To appear in Nature Nanotechnolog

    NCS-1 associates with adenosine A2A receptors and modulates receptor function

    Get PDF
    Modulation of G protein-coupled receptor (GPCR) signaling by local changes in intracellular calcium concentration is an established function of Calmodulin (CaM) which is known to interact with many GPCRs. Less is known about the functional role of the closely related neuronal EF-hand Ca2+-sensor proteins that frequently associate with CaM targets with different functional outcome. In the present study we aimed to investigate if a target of CaM—the A2A adenosine receptor is able to associate with two other neuronal calcium binding proteins (nCaBPs), namely NCS-1 and caldendrin. Using bioluminescence resonance energy transfer (BRET) and co-immunoprecipitation experiments we show the existence of A2A—NCS-1 complexes in living cells whereas caldendrin did not associate with A2A receptors under the conditions tested. Interestingly, NCS-1 binding modulated downstream A2A receptor intracellular signaling in a Ca2+-dependent manner. Taken together this study provides further evidence that neuronal Ca2+-sensor proteins play an important role in modulation of GPCR signaling

    The PAndAS Field of Streams: stellar structures in the Milky Way halo toward Andromeda and Triangulum

    Full text link
    We reveal the highly structured nature of the Milky Way stellar halo within the footprint of the PAndAS photometric survey from blue main sequence and main sequence turn-off stars. We map no fewer than five stellar structures within a heliocentric range of ~5 to 30 kpc. Some of these are known (the Monoceros Ring, the Pisces/Triangulum globular cluster stream), but we also uncover three well-defined stellar structures that could be, at least partly, responsible for the so-called Triangulum/Andromeda and Triangulum/Andromeda 2 features. In particular, we trace a new faint stellar stream located at a heliocentric distance of ~17 kpc. With a surface brightness of \Sigma_V ~ 32-32.5 mag/arcsec^2, it follows an orbit that is almost parallel to the Galactic plane north of M31 and has so far eluded surveys of the Milky Way halo as these tend to steer away from regions dominated by the Galactic disk. Investigating our follow-up spectroscopic observations of PAndAS, we serendipitously uncover a radial velocity signature from stars that have colors and magnitudes compatible with the stream. From the velocity of eight likely member stars, we show that this stellar structure is dynamically cold, with an unresolved velocity dispersion that is lower than 7.1 km/s at the 90-percent confidence level. Along with the width of the stream (300-650 pc), its dynamics points to a dwarf-galaxy-accretion origin. The numerous stellar structures we can map in the Milky Way stellar halo between 5 and 30 kpc and their varying morphology is a testament to the complex nature of the stellar halo at these intermediate distances.Comment: 11 pages, 8 figures, accepted for publication in the ApJ, Figure 3 is the money plo

    Neuronal calcium and cAMP cross-talk mediated by cannabinoid CB1 receptor and EF-hand calcium sensor interactions.

    Get PDF
    Endocannabinoids are important players in neural development and function. They act via receptors, whose activation inhibits cAMP production. The aim of the paper was to look for calcium- and cAMP-signaling cross-talk mediated by cannabinoid CB1 receptors (CB1R) and to assess the relevance of EF-hand CaM-like calcium sensors in this regard. Using a heterologous expression system, we demonstrated that CB1R interacts with calneuron-1 and NCS1 but not with caldendrin. Furthermore, interaction motives were identified in both calcium binding proteins and the receptor, and we showed that the first two sensors competed for binding to the receptor in a Ca2+-dependent manner. Assays in neuronal primary cultures showed that, CB1R-NCS1 complexes predominate at basal Ca2+ levels, whereas in the presence of ionomycin, a calcium ionophore, CB1R-calneuron-1 complexes were more abundant. Signaling assays following forskolin-induced intracellular cAMP levels showed in mouse striatal neurons that binding of CB1R to NCS1 is required for CB1R-mediated signaling, while the binding of CB1R to calneuron-1 completely blocked Gi-mediated signaling in response to a selective receptor agonist, arachidonyl-2-chloroethylamide. Calcium levels and interaction with calcium sensors may even lead to apparent Gs coupling after CB1R agonist challenge

    A parametric physical model for the intracluster medium and its use in joint SZ/X-ray analyses of galaxy clusters

    Full text link
    We present a parameterized model of the intra-cluster medium that is suitable for jointly analysing pointed observations of the Sunyaev-Zel'dovich (SZ) effect and X-ray emission in galaxy clusters. The model is based on assumptions of hydrostatic equilibrium, the Navarro, Frenk and White (NFW) model for the dark matter, and a softened power law profile for the gas entropy. We test this entropy-based model against high and low signal-to-noise mock observations of a relaxed and recently-merged cluster from N-body/hydrodynamic simulations, using Bayesian hyper-parameters to optimise the relative statistical weighting of the mock SZ and X-ray data. We find that it accurately reproduces both the global values of the cluster temperature, total mass and gas mass fraction (fgas), as well as the radial dependencies of these quantities outside of the core (r > kpc). For reference we also provide a comparison with results from the single isothermal beta model. We confirm previous results that the single isothermal beta model can result in significant biases in derived cluster properties.Comment: Published in MNRAS. 20 pages. 9 figure

    PAndAS' cubs: discovery of two new dwarf galaxies in the surroundings of the Andromeda and Triangulum galaxies

    Full text link
    We present the discovery of two new dwarf galaxies, Andromeda XXI and Andromeda XXII, located in the surroundings of the Andromeda and Triangulum galaxies (M31 and M33). These discoveries stem from the first year data of the Pan-Andromeda Archaeological Survey (PAndAS), a photometric survey of the M31/M33 group conducted with the Megaprime/MegaCam wide-field camera mounted on the Canada-France-Hawaii Telescope. Both satellites appear as spatial overdensities of stars which, when plotted in a color-magnitude diagram, follow metal-poor, [Fe/H]=-1.8, red giant branches at the distance of M31/M33. Andromeda XXI is a moderately bright dwarf galaxy (M_V=-9.9+/-0.6), albeit with low surface brightness, emphasizing again that many relatively luminous M31 satellites still remain to be discovered. It is also a large satellite, with a half-light radius close to 1 kpc, making it the fourth largest Local Group dwarf spheroidal galaxy after the recently discovered Andromeda XIX, Andromeda II and Sagittarius around the Milky Way, and supports the trend that M31 satellites are larger than their Milky Way counterparts. Andromeda XXII is much fainter (M_V=-6.5+/-0.8) and lies a lot closer in projection to M33 than it does to M31 (42 vs. 224 kpc), suggesting that it could be the first Triangulum satellite to be discovered. Although this is a very exciting possibility in the context of a past interaction of M33 with M31 and the fate of its satellite system, a confirmation will have to await a good distance estimate to confirm its physical proximity to M33. Along with the dwarf galaxies found in previous surveys of the M31 surroundings, these two new satellites bring the number of dwarf spheroidal galaxies in this region to 20.Comment: 10 pages, 6 figures, accepted for publication in ApJ; v2: minor typographical correction

    Barred Galaxies at z > 0.7: NICMOS HDFN Observations

    Full text link
    Previous optical studies found an unexpected deficit of bars at z > 0.7. To investigate the effects of bandshifting, we have studied the fraction of barred spirals in the NICMOS Deep Field North. At z > 0.7 we find at least four barred spirals, doubling the number previously detected. The number of barred galaxies is small because these (and previous) data lack adequate spatial resolution. A typical 5 kpc bar at z > 0.7 is only marginally detectable for WFPC2 at 0.8microns; the NICMOS data have even lower resolution and can only find the largest bars. The average size of the four bars seen at z > 0.7 is 12 kpc. The fraction of such large bars (4/95) is higher than that seen in nearby spirals (1/44); all known selection effects suggest that the observed fraction is a lower limit. However, important caveats such as small numbers and difficulties in defining comparable samples at high and low redshifts should be noted. We conclude that there is no significant evidence for a decrease in the fraction of barred spirals beyond z ~ 0.7.Comment: Accepted for publication in ApJ Letters, 4 pages in emulate-apj style, includes 3 figure
    • 

    corecore