19 research outputs found

    Proteomic analysis of the Plasmodium male gamete reveals the key role for glycolysis in flagellar motility.

    Get PDF
    BACKGROUND: Gametogenesis and fertilization play crucial roles in malaria transmission. While male gametes are thought to be amongst the simplest eukaryotic cells and are proven targets of transmission blocking immunity, little is known about their molecular organization. For example, the pathway of energy metabolism that power motility, a feature that facilitates gamete encounter and fertilization, is unknown. METHODS: Plasmodium berghei microgametes were purified and analysed by whole-cell proteomic analysis for the first time. Data are available via ProteomeXchange with identifier PXD001163. RESULTS: 615 proteins were recovered, they included all male gamete proteins described thus far. Amongst them were the 11 enzymes of the glycolytic pathway. The hexose transporter was localized to the gamete plasma membrane and it was shown that microgamete motility can be suppressed effectively by inhibitors of this transporter and of the glycolytic pathway. CONCLUSIONS: This study describes the first whole-cell proteomic analysis of the malaria male gamete. It identifies glycolysis as the likely exclusive source of energy for flagellar beat, and provides new insights in original features of Plasmodium flagellar organization

    Identification of Membrane Proteins in the Hyperthermophilic Archaeon Pyrococcus Furiosus Using Proteomics and Prediction Programs

    Get PDF
    Cell-free extracts from the hyperthermophilic archaeon Pyrococcus furiosus were separated into membrane and cytoplasmic fractions and each was analyzed by 2D-gel electrophoresis. A total of 66 proteins were identified, 32 in the membrane fraction and 34 in the cytoplasmic fraction. Six prediction programs were used to predict the subcellular locations of these proteins. Three were based on signal-peptides (SignalP, TargetP, and SOSUISignal) and three on transmembrane-spanning α-helices (TSEG, SOSUI, and PRED-TMR2). A consensus of the six programs predicted that 23 of the 32 proteins (72%) from the membrane fraction should be in the membrane and that all of the proteins from the cytoplasmic fraction should be in the cytoplasm. Two membrane-associated proteins predicted to be cytoplasmic by the programs are also predicted to consist primarily of transmembrane-spanning β-sheets using porin protein models, suggesting that they are, in fact, membrane components. An ATPase subunit homolog found in the membrane fraction, although predicted to be cytoplasmic, is most likely complexed with other ATPase subunits in the membrane fraction. An additional three proteins predicted to be cytoplasmic but found in the membrane fraction, may be cytoplasmic contaminants. These include a chaperone homolog that may have attached to denatured membrane proteins during cell fractionation. Omitting these three proteins would boost the membrane-protein predictability of the models to near 80%. A consensus prediction using all six programs for all 2242 ORFs in the P. furiosus genome estimates that 24% of the ORF products are found in the membrane. However, this is likely to be a minimum value due to the programs’ inability to recognize certain membrane-related proteins, such as subunits associated with membrane complexes and porin-type proteins

    A reexamination of information theory-based methods for DNA-binding site identification

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Searching for transcription factor binding sites in genome sequences is still an open problem in bioinformatics. Despite substantial progress, search methods based on information theory remain a standard in the field, even though the full validity of their underlying assumptions has only been tested in artificial settings. Here we use newly available data on transcription factors from different bacterial genomes to make a more thorough assessment of information theory-based search methods.</p> <p>Results</p> <p>Our results reveal that conventional benchmarking against artificial sequence data leads frequently to overestimation of search efficiency. In addition, we find that sequence information by itself is often inadequate and therefore must be complemented by other cues, such as curvature, in real genomes. Furthermore, results on skewed genomes show that methods integrating skew information, such as <it>Relative Entropy</it>, are not effective because their assumptions may not hold in real genomes. The evidence suggests that binding sites tend to evolve towards genomic skew, rather than against it, and to maintain their information content through increased conservation. Based on these results, we identify several misconceptions on information theory as applied to binding sites, such as negative entropy, and we propose a revised paradigm to explain the observed results.</p> <p>Conclusion</p> <p>We conclude that, among information theory-based methods, the most unassuming search methods perform, on average, better than any other alternatives, since heuristic corrections to these methods are prone to fail when working on real data. A reexamination of information content in binding sites reveals that information content is a compound measure of search and binding affinity requirements, a fact that has important repercussions for our understanding of binding site evolution.</p

    PRAS40 and PRR5-Like Protein Are New mTOR Interactors that Regulate Apoptosis

    Get PDF
    TOR (Target of Rapamycin) is a highly conserved protein kinase and a central controller of cell growth. TOR is found in two functionally and structurally distinct multiprotein complexes termed TOR complex 1 (TORC1) and TOR complex 2 (TORC2). In the present study, we developed a two-dimensional liquid chromatography tandem mass spectrometry (2D LC-MS/MS) based proteomic strategy to identify new mammalian TOR (mTOR) binding proteins. We report the identification of Proline-rich Akt substrate (PRAS40) and the hypothetical protein Q6MZQ0/FLJ14213/CAE45978 as new mTOR binding proteins. PRAS40 binds mTORC1 via Raptor, and is an mTOR phosphorylation substrate. PRAS40 inhibits mTORC1 autophosphorylation and mTORC1 kinase activity toward eIF-4E binding protein (4E-BP) and PRAS40 itself. HeLa cells in which PRAS40 was knocked down were protected against induction of apoptosis by TNFα and cycloheximide. Rapamycin failed to mimic the pro-apoptotic effect of PRAS40, suggesting that PRAS40 mediates apoptosis independently of its inhibitory effect on mTORC1. Q6MZQ0 is structurally similar to proline rich protein 5 (PRR5) and was therefore named PRR5-Like (PRR5L). PRR5L binds specifically to mTORC2, via Rictor and/or SIN1. Unlike other mTORC2 members, PRR5L is not required for mTORC2 integrity or kinase activity, but dissociates from mTORC2 upon knock down of tuberous sclerosis complex 1 (TSC1) and TSC2. Hyperactivation of mTOR by TSC1/2 knock down enhanced apoptosis whereas PRR5L knock down reduced apoptosis. PRR5L knock down reduced apoptosis also in mTORC2 deficient cells. The above suggests that mTORC2-dissociated PRR5L may promote apoptosis when mTOR is hyperactive. Thus, PRAS40 and PRR5L are novel mTOR-associated proteins that control the balance between cell growth and cell death

    Association of the Gene Polymorphisms IFN-γ +874, IL-13 −1055 and IL-4 −590 with Patterns of Reinfection with Schistosoma mansoni

    Get PDF
    Approximately 200 million people have schistosomiasis in parts of Africa, South America, the Middle East, the Caribbean and Asia. Several studies of multiple treatments and reinfections indicate that some people develop resistance to reinfection. Of all the immunologic findings associated with such studies, the most consistent observation is that resistance (usually defined as lower levels of infection upon reinfection) correlates with high IgE and low IgG4 antibodies against schistosome antigens. Our studies test whether single nucleotide polymorphisms residing in the gene or promoter regions of cytokines pivotal in controlling production of these antibody isotypes are different amongst those that develop resistance to reinfection as opposed to those that do not. Through genotyping of these polymorphisms in a cohort of occupationally exposed car washers, we found that men with certain genotypic patterns of polymorphisms in IL-4, IFN-γ, and IL-13 were significantly more likely to be resistant to reinfection than those with different patterns. These data provide initial insights into the potential genetic foundation of propensities of people to develop resistance to reinfection by schistosomes, and offer a basis for further molecular studies of how these polymorphisms might work at the transcriptional and gene product level in cells stimulated by schistosome antigens

    Lithographic manufacturing of adaptive optics components

    No full text
    Adaptive optics systems and their laboratory test environments call for a number of unusual optical components. Examples include lenslet arrays, pyramids, and Kolmogorov phase screens. Because of their specialized application, the availability of these parts is generally limited, with high cost and long lead time, which can also significantly drive optical system design. These concerns can be alleviated by a fast and inexpensive method of optical fabrication. To that end, we are exploring direct-write lithographic techniques to manufacture three different custom elements. We report results from a number of prototype devices including 1, 2, and 3 wave Multiple Order Diffractive (MOD) lenslet arrays with 0.75 mm pitch and phase screens with near Kolmogorov structure functions with a Fried length r(0) around 1 mm. We also discuss plans to expand our research to include a diffractive pyramid that is smaller, lighter, and more easily manufactured than glass versions presently used in pyramid wavefront sensors. We describe how these components can be produced within the limited dynamic range of the lithographic process, and with a rapid prototyping and manufacturing cycle. We discuss exploratory manufacturing methods, including replication, and potential observing techniques enabled by the ready availability of custom components.SPIE grants to authors of papers published in an SPIE Journal or Proceedings the right to post an author-prepared version or an official version (preferred version) of the published paper on an internal or external server controlled exclusively by the author/employer, provided that (a) such posting is noncommercial in nature and the paper is made available to users without charge; (b) an appropriate copyright notice and full citation appear with the paper, and (c) a link to SPIE's official online version of the abstract is provided using the DOI (Document Object Identifier) link.This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Dietary Supplementation of a Commercial Prebiotic, Probiotic and Their Combination Affected Growth Performance and Transient Intestinal Microbiota of Red Drum (<i>Sciaenops ocellatus</i> L.)

    No full text
    In the present study, the potential synergism between beneficial lactic acid bacteria (Pediococcus acidilactici) contained in a probiotic and a mixture of fermentable complex carbohydrates and autolyzed brewer’s yeast (or prebiotic) were explored in red drum. Four experimental diets were formulated from practical ingredients, and the basal diet was supplemented with either probiotic, prebiotic, or both supplements. Red drum juveniles (~5.5 g) were offered the four experimental diets for 56 days, and at the end of the feeding trial fish fed diets supplemented with probiotic had significantly better weight gain than those fed the non-supplemented diets, and higher protein content in their whole-body composition. Transient intestinal microbiome alpha and beta diversity were significantly affected by the dietary treatments. Interestingly, a higher relative abundance of the lactic acid genus Pediococcus was observed for fish fed diets supplemented with the prebiotic. A higher relative abundance was also observed for the predicted functions of the microbial metagenome, and many of these pathways involved the biosynthesis of essential amino acids, vitamins, and nucleotides. Even though no potential synergistic effect was observed, the individual inclusion of these prebiotic and probiotic supplements positively affected the intestinal health and growth performance of red drum, respectively
    corecore