145 research outputs found

    Transportable setup for amplifier phase fidelity measurements

    Get PDF
    One possible laser source for the Laser Interferometer Space Antenna (LISA) consists of an Ytterbium-doped fiber amplifier originally developed for inter-satellite communication, seeded by the laser used for the technology demonstrator mission LISA Pathfinder. LISA needs to transmit clock information between its three spacecraft to correct for phase noise between the clocks on the individual spacecraft. For this purpose phase modulation sidebands at GHz frequencies will be imprinted on the laser beams between spacecraft. Differential phase noise between the carrier and a sideband introduced within the optical chain must be very low. We report on a transportable setup to measure the phase fidelity of optical amplifiers.DFG/EXC/QUESTDLR/50OQ1301DLR/50OQ060

    Providing Feedback Following Leadership Walkrounds is Associated with Better Patient Safety Culture, Higher Employee Engagement and Lower Burnout

    Get PDF
    Background There is a poorly understood relationship between Leadership WalkRounds (WR) and domains such as safety culture, employee engagement, burnout and work-life balance. Methods This cross-sectional survey study evaluated associations between receiving feedback about actions taken as a result of WR and healthcare worker assessments of patient safety culture, employee engagement, burnout and work-life balance, across 829 work settings. Results 16 797 of 23 853 administered surveys were returned (70.4%). 5497 (32.7% of total) reported that they had participated in WR, and 4074 (24.3%) reported that they participated in WR with feedback. Work settings reporting more WR with feedback had substantially higher safety culture domain scores (first vs fourth quartile Cohen’s d range: 0.34–0.84; % increase range: 15–27) and significantly higher engagement scores for four of its six domains (first vs fourth quartile Cohen’s d range: 0.02–0.76; % increase range: 0.48–0.70). Conclusion This WR study of patient safety and organisational outcomes tested relationships with a comprehensive set of safety culture and engagement metrics in the largest sample of hospitals and respondents to date. Beyond measuring simply whether WRs occur, we examine WR with feedback, as WR being done well. We suggest that when WRs are conducted, acted on, and the results are fed back to those involved, the work setting is a better place to deliver and receive care as assessed across a broad range of metrics, including teamwork, safety, leadership, growth opportunities, participation in decision-making and the emotional exhaustion component of burnout. Whether WR with feedback is a manifestation of better norms, or a cause of these norms, is unknown, but the link is demonstrably potent

    Changes in Cataplexy Frequency in a Clinical Trial of Lower-Sodium Oxybate with Taper and Discontinuation of Other Anticataplectic Medications

    Get PDF
    Correction:Background Lower-sodium oxybate (LXB) is an oxybate medication with the same active moiety as sodium oxybate (SXB) and a unique composition of cations, resulting in 92% less sodium. LXB was shown to improve cataplexy and excessive daytime sleepiness in people with narcolepsy in a placebo-controlled, double-blind, randomized withdrawal study (NCT03030599). Additional analyses of data from this study were conducted to explore the effects of LXB on cataplexy, including the clinical course and feasibility of transition from other anticataplectics to LXB monotherapy. Objective The aim of these analyses was to evaluate cataplexy frequency during initiation/optimization of LXB and taper/discontinuation of prior antidepressant/anticataplectic medications. Methods Eligible participants (adults aged 18-70 years with narcolepsy with cataplexy) entered the study taking SXB only (group A), SXB + other anticataplectics (group B), or anticataplectic medication other than SXB (group C), or were cataplexy-treatment naive (group D). LXB was initiated/optimized during a 12-week, open-label, optimized treatment and titration period (OLOTTP). Other anticataplectics were tapered/discontinued during weeks 3-10 of OLOTTP. A 2-week stable-dose period (SDP; during which participants took a stable dose of open-label LXB) and 2-week double-blind randomized withdrawal period (during which participants were randomized to continue LXB treatment or switch to placebo) followed OLOTTP. Treatment-emergent adverse events (TEAEs) were recorded throughout the duration of the study. Results At the beginning of OLOTTP, median weekly cataplexy attacks were lower in participants taking SXB at study entry (SXB only [2.00]; SXB + other anticataplectics [0.58]) versus participants who were taking other anticataplectics (3.50) or were anticataplectic naive (5.83). Median weekly cataplexy attacks decreased during weeks 1-2 of OLOTTP in all groups. Increased cataplexy frequency was observed in participants tapering/discontinuing other anticataplectics during weeks 3-10 and was more prominent in participants taking other anticataplectics alone compared with those taking SXB plus other anticataplectics. Cataplexy frequency decreased throughout initiation/optimization in anticataplectic-naive participants. Median number of cataplexy-free days/week at the end of SDP (study week 14) was similar in all groups (6.0, 6.1, 6.0, and 6.2 in groups A, B, C, and D, respectively). During OLOTTP and SDP, TEAEs of worsening cataplexy were reported in 0%, 47.8%, 16.7%, and 2.2% of participants in groups A, B, C, and D, respectively; most TEAEs of worsening cataplexy were reported during tapering/discontinuation of other anticataplectics. Conclusions LXB monotherapy was effective in reducing cataplexy and increasing cataplexy-free days. These results illustrate the feasibility of switching from SXB to LXB while tapering/discontinuing other anticataplectics.Peer reviewe

    River ecosystem conceptual models and non‐perennial rivers: A critical review

    Get PDF
    Conceptual models underpin river ecosystem research. However, current models focus on continuously flowing rivers and few explicitly address characteristics such as flow cessation and drying. The applicability of existing conceptual models to nonperennial rivers that cease to flow (intermittent rivers and ephemeral streams, IRES) has not been evaluated. We reviewed 18 models, finding that they collectively describe main drivers of biogeochemical and ecological patterns and processes longitudinally (upstream-downstream), laterally (channel-riparian-floodplain), vertically (surface water-groundwater), and temporally across local and landscape scales. However, perennial rivers are longitudinally continuous while IRES are longitudinally discontinuous. Whereas perennial rivers have bidirectional lateral connections between aquatic and terrestrial ecosystems, in IRES, this connection is unidirectional for much of the time, from terrestrial-to-aquatic only. Vertical connectivity between surface and subsurface water occurs bidirectionally and is temporally consistent in perennial rivers. However, in IRES, this exchange is temporally variable, and can become unidirectional during drying or rewetting phases. Finally, drying adds another dimension of flow variation to be considered across temporal and spatial scales in IRES, much as flooding is considered as a temporally and spatially dynamic process in perennial rivers. Here, we focus on ways in which existing models could be modified to accommodate drying as a fundamental process that can alter these patterns and processes across spatial and temporal dimensions in streams. This perspective is needed to support river science and management in our era of rapid global change, including increasing duration, frequency, and occurrence of drying.info:eu-repo/semantics/publishedVersio

    Biological indices to characterize community responses to drying in streams with contrasting flow permanence regimes

    Get PDF
    Many river networks include temporary reaches that stop flowing and may dry during unpredictable droughts (near-perennial) or more frequently (intermittent). A few biological indices have been developed to assess invertebrate community responses to hydrological variability, including the instream conditions associated with drought, but their performance in temporary streams remains poorly known. We evaluated the ability of two such indices, the Lotic-invertebrate Index for Flow Evaluation (LIFE) and the Drought Effect of Habitat Loss on Invertebrates (DEHLI), to predict responses to flow cessation and drying in temporary streams with contrasting flow permanence regimes. We used a 26-year dataset comprising spring-season invertebrate community samples and daily discharge measurements from 46 sites in a cool, wet temperate region, to examine relationships between hydrological variables and changes in index scores. We also identified taxon-specific thresholds at which occurrence changed with increasing drying and flowing durations. Both indices effectively characterized responses to increasing no-flow durations. DEHLI also reflected community changes following flow resumptions, identified differences in responses among flow permanence groups, and was particularly able to predict community responses at near-perennial sites. DEHLI scores at near-perennial sites took on average three years after a drying event to return to values typical of perennial sites, whereas responses to increasing flow duration were more erratic at intermittent sites. Lotic specialists declined whereas lentic and semi-aquatic taxa increased in occurrence with no-flow duration after summers with <50 days without flow, due to changes in the availability of preferred habitat types. Community responses to drying events were less predictable among intermittent than near-perennial sites, likely because differences in habitat conditions and connectivity may lead intermittent communities to harbour contrasting pools of species with strategies that promote persistence during and/or recolonization after drying. We identify DEHLI as an index that can characterize community responses to drying in temporary streams with contrasting flow permanence regimes. We also recommend the development of new indices that include lentic, semi-aquatic and terrestrial as well as lotic taxa, to more comprehensively describe and predict community responses to changing instream conditions

    Search for gravitational waves from compact binary coalescence in LIGO and Virgo data from S5 and VSR1

    Get PDF
    We report the results of the first search for gravitational waves from compact binary coalescence using data from the Laser Interferometer Gravitational-Wave Observatory and Virgo detectors. Five months of data were collected during the Laser Interferometer Gravitational-Wave Observatory’s S5 and Virgo’s VSR1 science runs. The search focused on signals from binary mergers with a total mass between 2 and 35M⊙. No gravitational waves are identified. The cumulative 90%-confidence upper limits on the rate of compact binary coalescence are calculated for nonspinning binary neutron stars, black hole-neutron star systems, and binary black holes to be 8.7×10−3  yr−1 L10−1, 2.2×10−3  yr−1 L10−1, and 4.4×10−4  yr−1 L10−1, respectively, where L10 is 1010 times the blue solar luminosity. These upper limits are compared with astrophysical expectations. © 2010 The American Physical Societ

    Search for gravitational waves from intermediate mass binary black holes

    Get PDF
    We present the results of a weakly modeled burst search for gravitational waves from mergers of nonspinning intermediate mass black holes in the total mass range 100–450  M⊙ and with the component mass ratios between 1∶1 and 4∶1. The search was conducted on data collected by the LIGO and Virgo detectors between November of 2005 and October of 2007. No plausible signals were observed by the search which constrains the astrophysical rates of the intermediate mass black holes mergers as a function of the component masses. In the most efficiently detected bin centered on 88+88  M⊙, for nonspinning sources, the rate density upper limit is 0.13 per Mpc3 per Myr at the 90% confidence level. © 2012 The American Physical Societ

    Search for gravitational waves from low mass compact binary coalescence in LIGO's sixth science run and Virgo's science runs 2 and 3

    Get PDF
    We report on a search for gravitational waves from coalescing compact binaries using LIGO and Virgo observations between July 7, 2009, and October 20, 2010. We searched for signals from binaries with total mass between 2 and 25M⊙; this includes binary neutron stars, binary black holes, and binaries consisting of a black hole and neutron star. The detectors were sensitive to systems up to 40 Mpc distant for binary neutron stars, and further for higher mass systems. No gravitational-wave signals were detected. We report upper limits on the rate of compact binary coalescence as a function of total mass, including the results from previous LIGO and Virgo observations. The cumulative 90% confidence rate upper limits of the binary coalescence of binary neutron star, neutron star-black hole, and binary black hole systems are 1.3×10−4, 3.1×10−5, and 6.4×10−6  Mpc−3 yr−1, respectively. These upper limits are up to a factor 1.4 lower than previously derived limits. We also report on results from a blind injection challenge. © 2012 The American Physical Societ

    All-sky search for periodic gravitational waves in the full S5 LIGO data

    Get PDF
    We report on an all-sky search for periodic gravitational waves in the frequency band 50–800 Hz and with the frequency time derivative in the range of 0 through −6×10−9  Hz/s. Such a signal could be produced by a nearby spinning and slightly nonaxisymmetric isolated neutron star in our Galaxy. After recent improvements in the search program that yielded a 10× increase in computational efficiency, we have searched in two years of data collected during LIGO’s fifth science run and have obtained the most sensitive all-sky upper limits on gravitational-wave strain to date. Near 150 Hz our upper limit on worst-case linearly polarized strain amplitude h0 is 1×10−24, while at the high end of our frequency range we achieve a worst-case upper limit of 3.8×10−24 for all polarizations and sky locations. These results constitute a factor of 2 improvement upon previously published data. A new detection pipeline utilizing a loosely coherent algorithm was able to follow up weaker outliers, increasing the volume of space where signals can be detected by a factor of 10, but has not revealed any gravitational-wave signals. The pipeline has been tested for robustness with respect to deviations from the model of an isolated neutron star, such as caused by a low-mass or long-period binary companion. © 2012 The American Physical Societ
    corecore