342 research outputs found

    Handedness, Health and Cognitive Development: Evidence from Children in the NLSY

    Get PDF
    Using data from the US National Longitudinal Survey of Youth, and fitting family fixed-effects models of child health and cognitive development, we test if left-handed children do significantly worse than their right-handed counterparts. The health measures cover both physical and mental health, and the cognitive development test scores span (1) Memory, (2) Vocabulary, (3) Mathematics, (4) Reading and (5) Comprehension. We find that while left-handed children have a significantly higher probability of suffering an injury needing medical attention, there is no difference in their experience of illness or poor mental health. We also find that left-handed children have significantly lower cognitive development test scores than right-handed children for all areas of development with the exception of reading. Moreover, the left-handedness disadvantage is larger for boys than girls, and remains roughly constant as children grow older for most outcomes. We also find that the probability of a child being left-handed is not related to the socioeconomic characteristics of the family, such as income or maternal education. All these results tend to support a difference in brain functioning or neurological explanation for handedness differentials rather than one based on left-handed children living in a right-handed world.handedness, children, health, cognitive development, family fixed-effects

    Disentangling input and output-related components of spatial neglect

    Get PDF
    Spatial neglect is a heterogeneous disorder with a multitude of manifestations and subtypes. Common clinical paper and pencil neglect tests fail to differentiate between these subtypes. For example, neglect patients typically bisect lines to the right. This bias can be caused by an underestimation of the left half of the line (input-related deficit), by the failure to direct actions toward the left side of space (output-related deficit), or by a mixture of these impairments. To disentangle these impairments, we used a test consisting of a line bisection task on a touch screen monitor (manual motor task) and the subsequent judgment of one's own bisection performance (visual perceptual task). It was hypothesized that patients with mainly output-related neglect should be better able to recognize their misbisected lines than patients with purely input-related neglect. In a group of 16 patients suffering from spatial neglect after right brain damage, we found that patients were three times more likely to suffer from a predominantly input-related than from an output-related subtype. The results thus suggest that neglect is typically an input-related impairment. Additional analysis of the line bisection task revealed that temporal (slowness in initiation and execution of contralateral movements) and spatial (insufficient movement amplitude toward the contralesional side) aspects of output-related neglect were mutually unrelated. This independence raises the possibility that a fine-grained differentiation of output-related neglect is required. That is, impairments in lateralized temporal and spatial aspects of movements may underlie different neglect subtypes

    Skeletal muscle dysfunction is associated with derangements in mitochondrial bioenergetics (but not UCP3) in a rodent model of sepsis

    Get PDF
    Muscle dysfunction is a common feature of severe sepsis and multi-organ failure. Recent evidence implicates bioenergetic dysfunction and oxidative damage as important underlying pathophysiological mechanisms. Increased abundance of uncoupling protein-3 (UCP-3) in sepsis suggests increased mitochondrial proton leak, which may reduce mitochondrial coupling efficiency but limit ROS production. Using a murine model, we examined metabolic, cardiovascular and skeletal muscle contractile changes following induction of peritoneal sepsis in wild-type and Ucp3(-/-) mice. Mitochondrial membrane potential (Δψm) was measured using two-photon microscopy in living diaphragm, and contractile function was measured in diaphragm muscle strips. The kinetic relationship between membrane potential and oxygen consumption was determined using a modular kinetic approach in isolated mitochondria. Sepsis was associated with significant whole body metabolic suppression, hypothermia and cardiovascular dysfunction. Maximal force generation was reduced and fatigue accelerated in ex vivo diaphragm muscle strips from septic mice. Mitochondrial membrane potential was lower in the isolated diaphragm from septic mice despite normal substrate oxidation kinetics and proton leak in skeletal muscle mitochondria. Even though wild-type mice exhibited an absolute 26 ± 6% higher UCP-3 protein abundance at 24 hours, no differences were seen in whole animal or diaphragm physiology, nor in survival rates, between wild-type and Ucp3(-/-) mice. In conclusion, this murine sepsis model shows a hypometabolic phenotype with evidence of significant cardiovascular and muscle dysfunction. This was associated with lower Δψm and alterations in mitochondrial ATP turnover and phosphorylation pathway. However, UCP-3 does not play an important functional role, despite its upregulation

    The cheerleader effect is robust to experimental manipulations of presentation time

    Get PDF
    The “cheerleader effect” occurs when the same face is perceived to be significantly more attractive when seen among a group of faces compared to alone. Since perceived attractiveness decreases with additional viewing time, we investigated whether the cheerleader effect occurs simply because the target face is seen for less time in a group than it is alone. Observers rated the attractiveness of each target face twice; once in a group, and once alone. We manipulated the amount of time that each group image was presented for prior to the cue toward the target face (300, 1000, 2000, 3000, or 7000 milliseconds). Faces were perceived to be significantly more attractive in each group condition, regardless of presentation time, replicating the cheerleader effect. Furthermore, uncued presentation time did not modulate the magnitude of this increase, demonstrating that a presentation time discrepancy does not contribute to the size of the typical cheerleader effect

    Right-Wing Politicians Prefer the Emotional Left

    Get PDF
    Physiological research suggests that social attitudes, such as political beliefs, may be partly hard-wired in the brain. Conservatives have heightened sensitivity for detecting emotional faces and use emotion more effectively when campaigning. As the left face displays emotion more prominently, we examined 1538 official photographs of conservative and liberal politicians from Australia, Canada, the United Kingdom and the United States for an asymmetry in posing. Across nations, conservatives were more likely than liberals to display the left cheek. In contrast, liberals were more likely to face forward than were conservatives. Emotion is important in political campaigning and as portraits influence voting decisions, conservative politicians may intuitively display the left face to convey emotion to voters

    Intelligence within BAOR and NATO's Northern Army Group

    Get PDF
    During the Cold War the UK's principal military role was its commitment to the North Atlantic Treaty Organisation (NATO) through the British Army of the Rhine (BAOR), together with wartime command of NATO's Northern Army Group. The possibility of a surprise attack by the numerically superior Warsaw Pact forces ensured that great importance was attached to intelligence, warning and rapid mobilisation. As yet we know very little about the intelligence dimension of BAOR and its interface with NATO allies. This article attempts to address these neglected issues, ending with the impact of the 1973 Yom Kippur War upon NATO thinking about warning and surprise in the mid-1970s. It concludes that the arrangements made by Whitehall for support to BAOR from national assets during crisis or transition to war were - at best - improbable. Accordingly, over the years, BAOR developed its own unique assets in the realm of both intelligence collection and special operations in order to prepare for the possible outbreak of conflict

    A Study of Muon Neutrino Disappearance Using the Fermilab Main Injector Neutrino Beam

    Get PDF
    We report the results of a search for muon-neutrino disappearance by the Main Injector Neutrino Oscillation Search. The experiment uses two detectors separated by 734 km to observe a beam of neutrinos created by the Neutrinos at the Main Injector facility at Fermi National Accelerator Laboratory. The data were collected in the first 282 days of beam operations and correspond to an exposure of 1.27e20 protons on target. Based on measurements in the Near Detector, in the absence of neutrino oscillations we expected 336 +/- 14 muon-neutrino charged-current interactions at the Far Detector but observed 215. This deficit of events corresponds to a significance of 5.2 standard deviations. The deficit is energy dependent and is consistent with two-flavor neutrino oscillations according to delta m-squared = 2.74e-3 +0.44/-0.26e-3 eV^2 and sin^2(2 theta) > 0.87 at 68% confidence level.Comment: In submission to Phys. Rev.

    Measurement of the Atmospheric Muon Charge Ratio at TeV Energies with MINOS

    Get PDF
    The 5.4 kton MINOS far detector has been taking charge-separated cosmic ray muon data since the beginning of August, 2003 at a depth of 2070 meters-water-equivalent in the Soudan Underground Laboratory, Minnesota, USA. The data with both forward and reversed magnetic field running configurations were combined to minimize systematic errors in the determination of the underground muon charge ratio. When averaged, two independent analyses find the charge ratio underground to be 1.374 +/- 0.004 (stat.) +0.012 -0.010(sys.). Using the map of the Soudan rock overburden, the muon momenta as measured underground were projected to the corresponding values at the surface in the energy range 1-7 TeV. Within this range of energies at the surface, the MINOS data are consistent with the charge ratio being energy independent at the two standard deviation level. When the MINOS results are compared with measurements at lower energies, a clear rise in the charge ratio in the energy range 0.3 -- 1.0 TeV is apparent. A qualitative model shows that the rise is consistent with an increasing contribution of kaon decays to the muon charge ratio.Comment: 16 pages, 17 figure

    Neutrino and Antineutrino Inclusive Charged-current Cross Section Measurements with the MINOS Near Detector

    Get PDF
    The energy dependence of the neutrino-iron and antineutrino-iron inclusive charged-current cross sections and their ratio have been measured using a high-statistics sample with the MINOS Near Detector exposed to the NuMI beam from the Main Injector at Fermilab. Neutrino and antineutrino fluxes were determined using a low hadronic energy subsample of charged-current events. We report measurements of neutrino-Fe (antineutrinoFe) cross section in the energy range 3-50 GeV (5-50 GeV) with precision of 2-8% (3-9%) and their ratio which is measured with precision 2-8%. The data set spans the region from low energy, where accurate measurements are sparse, up to the high-energy scaling region where the cross section is well understood.Comment: accepted by PR
    corecore