59 research outputs found

    Calcified tissue structure in the distal condyle of the third metacarpal bonein young Thoroughbred horses

    Get PDF
    PhDAims: To determine improvements in third metacarpal (Mc3) condylar microanatomy attributable to preconditioning exercise. To investigate developmental causes of Mc3 condylar fracture. Methods: Twelve Thoroughbred horses were raised at pasture; six received preconditioning exercise from 10 days. Calcein labels were administered 19 and 11 days prior to euthanasia at 18 months. Six horses also received 2 seasons of race-training and were euthanised at 3 years. Slices were taken from the distal Mc3 condyle in the frontal and dorsal- and palmar-oblique frontal planes, scanned with DXA and macerated (frontal slices) or embedded in PMMA (oblique slices). Articular calcified cartilage (ACC) and subchondral bone (SCB) in oblique slices were imaged using confocal scanning light microscopy and quantitative backscattered electron scanning electron microscopy. ACC and SCB in the palmar slice lateral parasagittal grooves were imaged using μCT and nanoindentation tested. Results: Characteristic spatial variations in ACC and SCB histomorphometric parameters were present, none of which was significantly related to preconditioning exercise. Thickened, aberrantly mineralised ACC was found in 13/24 parasagittal grooves in the palmar slices and on the sagittal ridge of 4/12 dorsal slices of 18-month-old horses. Deep to thickened ACC, SCB had an open marrow structure, having not adopted the buttress morphology of the normal SCB plate. SCB in 3-year-old horses had incorporated early ACC defects as notches in parasagittal grooves and a hyaline cartilage island in a sagittal ridge. ACC was less stiff and SCB more stiff in affected than unaffected parasagittal grooves. Chondroclastic resorption in the parasagittal groove may be retarded as early as 3-6 months, possibly due to localised inhibition of ACC mineralisation. Linear defects in the Mc3 parasagittal groove may develop prior to entry to race training and are not significantly affected by preconditioning exercise. Early identification of affected individuals should aid in reducing condylar fracture riskHorserace Betting Levy Board Veterinary Research Training Scholarship Overseas Research Students Awards Schem

    A Hitchhiker's guide through the bio-image analysis software universe

    Get PDF
    Modern research in the life sciences is unthinkable without computational methods for extracting, quantifying and visualising information derived from microscopy imaging data of biological samples. In the past decade, we observed a dramatic increase in available software packages for these purposes. As it is increasingly difficult to keep track of the number of available image analysis platforms, tool collections, components and emerging technologies, we provide a conservative overview of software that we use in daily routine and give insights into emerging new tools. We give guidance on which aspects to consider when choosing the platform that best suits the user's needs, including aspects such as image data type, skills of the team, infrastructure and community at the institute and availability of time and budget.Peer reviewe

    Grading of recommendations, assessment, development and evaluations concept 7: issues and insights linking guideline recommendations to trustworthy essential medicine lists

    Get PDF
    Objectives: Guidelines and essential medicine lists (EMLs) bear similarities and differences in the process that lead to decisions. Access to essential medicines is central to achieve universal health coverage. The World Health Organization (WHO) EML has guided prioritization of essential medicines globally for nearly 50 years, and national EMLs (NEMLs) exist in over 130 countries. Guideline and EML decisions, at WHO or national levels, are not always coordinated and aligned. We sought to explore challenges, and potential solutions, for decision-making to support trustworthy medicine selection for EMLs from a Grading of Recommendations, Assessment, Development and Evaluations (GRADE) Working Group perspective. We primarily focus on the WHO EML; however, our findings may be applicable to NEML decisions as well. Study Design and Setting: We identified key challenges in connecting the EML to health guidelines by involving a broad group of stakeholders and assessing case studies including real applications to the WHO EML, South Africa NEML, and a multiple sclerosis guideline connected to a WHO EML application for multiple sclerosis treatments. To address challenges, we utilized the results of a survey and feedback from the stakeholders, and iteratively met as a project group. We drafted a conceptual framework of challenges and potential solutions. We presented a summary of the results for feedback to all attendees of the GRADE Working Group meetings in November 2022 (approximately 120 people) and in May 2023 (approximately 100 people) before finalizing the framework. Results: We prioritized issues and insights/solutions that addressed the connections between the EML and health guidelines. Our suggested solutions include early planning alignment of guideline groups and EMLs, considering shared participation to strengthen linkage, further clarity on price/cost considerations, and using explicit shared criteria to make guideline and EML decisions. We also provide recommendations to strengthen the connection between WHO EML and NEMLs including through contextualization methods. Conclusion: This GRADE concept article, jointly developed by key stakeholders from the guidelines and EMLs field, identified key conceptual issues and potential solutions to support the continued advancement of trustworthy EMLs. Adopting structured decision criteria that can be linked to guideline recommendations bears the potential to advance health equity and gaps in availability of essential medicines within and between countries

    In Vivo Time- Resolved Microtomography Reveals the Mechanics of the Blowfly Flight Motor

    Get PDF
    Dipteran flies are amongst the smallest and most agile of flying animals. Their wings are driven indirectly by large power muscles, which cause cyclical deformations of the thorax that are amplified through the intricate wing hinge. Asymmetric flight manoeuvres are controlled by 13 pairs of steering muscles acting directly on the wing articulations. Collectively the steering muscles account for <3% of total flight muscle mass, raising the question of how they can modulate the vastly greater output of the power muscles during manoeuvres. Here we present the results of a synchrotron-based study performing micrometre-resolution, time-resolved microtomography on the 145 Hz wingbeat of blowflies. These data represent the first four-dimensional visualizations of an organism's internal movements on sub-millisecond and micrometre scales. This technique allows us to visualize and measure the three-dimensional movements of five of the largest steering muscles, and to place these in the context of the deforming thoracic mechanism that the muscles actuate. Our visualizations show that the steering muscles operate through a diverse range of nonlinear mechanisms, revealing several unexpected features that could not have been identified using any other technique. The tendons of some steering muscles buckle on every wingbeat to accommodate high amplitude movements of the wing hinge. Other steering muscles absorb kinetic energy from an oscillating control linkage, which rotates at low wingbeat amplitude but translates at high wingbeat amplitude. Kinetic energy is distributed differently in these two modes of oscillation, which may play a role in asymmetric power management during flight control. Structural flexibility is known to be important to the aerodynamic efficiency of insect wings, and to the function of their indirect power muscles. We show that it is integral also to the operation of the steering muscles, and so to the functional flexibility of the insect flight motor

    Trabecular Reorganization in Consecutive Iliac Crest Biopsies when Switching from Bisphosphonate to Strontium Ranelate Treatment

    Get PDF
    BACKGROUND: Several agents are available to treat osteoporosis while addressing patient-specific medical needs. Individuals' residual risk to severe fracture may require changes in treatment strategy. Data at osseous cellular and microstructural levels due to a therapy switch between agents with different modes of action are rare. Our study on a series of five consecutively taken bone biopsies from an osteoporotic individual over a six-year period analyzes changes in cellular characteristics, bone microstructure and mineralization caused by a therapy switch from an antiresorptive (bisphosphonate) to a dual action bone agent (strontium ranelate). METHODOLOGY/PRINCIPAL FINDINGS: Biopsies were progressively taken from the iliac crest of a female patient. Four biopsies were taken during bisphosphonate therapy and one biopsy was taken after one year of strontium ranelate (SR) treatment. Furthermore, serum bone markers and dual x-ray absorptiometry measurements were acquired. Undecalcified histology was used to assess osteoid parameters and bone turnover. Structural indices and degree of mineralization were determined using microcomputed tomography, quantitative backscattered electron imaging, and combined energy dispersive x-ray/µ-x-ray-fluorescence microanalysis. CONCLUSIONS/SIGNIFICANCE: Microstructural data revealed a notable increase in bone volume fraction after one year of SR treatment compared to the bisphosphonate treatment period. Indices of connectivity density, structure model index and trabecular bone pattern factor were predominantly enhanced indicating that the architectural transformation from trabecular rods to plates was responsible for the bone volume increase and less due to changes in trabecular thickness and number. Administration of SR following bisphosphonates led to a maintained mineralization profile with an uptake of strontium on the bone surface level. Reactivated osteoclasts designed tunneling, hook-like intratrabecular resorption sites. The appearance of tunneling resorption lacunae and the formation of both mini-modeling units and osteon-like structures within increased plate-like cancellous bone mass provides additional information on the mechanisms of strontium ranelate following bisphosphonate treatment, which may deserve special attention when monitoring a treatment switch

    Three-Dimensional Geometric Analysis of Felid Limb Bone Allometry

    Get PDF
    Studies of bone allometry typically use simple measurements taken in a small number of locations per bone; often the midshaft diameter or joint surface area is compared to body mass or bone length. However, bones must fulfil multiple roles simultaneously with minimum cost to the animal while meeting the structural requirements imposed by behaviour and locomotion, and not exceeding its capacity for adaptation and repair. We use entire bone volumes from the forelimbs and hindlimbs of Felidae (cats) to investigate regional complexities in bone allometry.Computed tomographic (CT) images (16435 slices in 116 stacks) were made of 9 limb bones from each of 13 individuals of 9 feline species ranging in size from domestic cat (Felis catus) to tiger (Panthera tigris). Eleven geometric parameters were calculated for every CT slice and scaling exponents calculated at 5% increments along the entire length of each bone. Three-dimensional moments of inertia were calculated for each bone volume, and spherical radii were measured in the glenoid cavity, humeral head and femoral head. Allometry of the midshaft, moments of inertia and joint radii were determined. Allometry was highly variable and related to local bone function, with joint surfaces and muscle attachment sites generally showing stronger positive allometry than the midshaft.Examining whole bones revealed that bone allometry is strongly affected by regional variations in bone function, presumably through mechanical effects on bone modelling. Bone's phenotypic plasticity may be an advantage during rapid evolutionary divergence by allowing exploitation of the full size range that a morphotype can occupy. Felids show bone allometry rather than postural change across their size range, unlike similar-sized animals

    Calcified Tissue Structure in the Distal Condyle of the Third Metacarpal Bone in Young Thoroughbred House

    No full text
    Aims: To determine improvements in'third metacarpal (Mc3) condylar microana'tomy ' attributable to preconditioning exercise. To investigate developmental causes of Mc3 condylar fracture. Methods: Twelve Thoroughbred horses were raised at pasture; six received preconditioning exercise from 10 days. Ca1cein labels were administered 19 and 11 days prior to euthanasia at 18 months. Six horses also received 2 seasons of race-training and were euthanised at 3 years. Slices were taken from the distal Mc3 condyle in the frontal and dorsal- and palmar-oblique frontal planes, scanned with DXA and macerated (frontal slices) or embedded in P.MMA (oblique slices). Articular calcified cartilage (ACC) and subchondral bone (SCB) in oblique slices were imaged using confocal scanning light microscopy and quantitative backscattered electron scarining electron microscopy. ACC and SCB in the palmar slice lateral parasagittal grooves were imaged using JlCT and nanoindentation tested. Results: Characteristic spatial variations in ACC and SCB histomorphometric parameters were present, none of which was significantly related to preconditioning exercise. Thickened, aberrantly mineralised ACC was found in 13124 parasagittal grooves in the palmar slices and on the sagittal ridge of 4112 dorsal slices of 18-month-old horses. Deep to thickened ACC, SCB had an open marrow structure, having not adopted the buttress morphology of the normal SCB plate. SCB in 3-year-old horses had incorporated early ACC defects as notches in parasagittal grooves and a hyaline cartilage island in a sagittal ridge. ACC was less stiff and SCB more stiff in affected than unaffected ' parasugiltul grooves. Chondroclastic resorptiun iIi. the paras~giual groove may be retarded as early as 3-6 months, possibly due to localised inhibition of ACC mineralisation. Linear defects in the Mc3 parasagittal groove may develop prior to entry to race training and are not significantly affected by preconditioning exercise. Early identification of affected individuals should aid in reducing condylar fracture risk.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Closing cones create conical lamellae in secondary osteonal bone

    No full text
    Lamellae are sheets of mineralized collagen 1–20 µm thick, extending over hundreds of µm in bone tissue, occupying bone's structural hierarchy at a level above collagen fibres and osteocytes, and below osteons and trabeculae. Osteons are tubular arrangements of lamellae surrounding central neurovascular canals. Lamellae in osteons are usually described as concentric cylinders based on their annular appearance in transverse section. In this review, I provide a perspective on current understanding of the relationship between geometry of the bone formation front and the shape of lamellae produced at it, reaching the conclusion that the ‘closing cone’ bone formation front in secondary osteonal remodelling must necessarily result in cone-shaped lamellae in the mature secondary osteon. Secondary osteons replace primary osteons through a tunnelling process of bone turnover, meaning that conical lamellae may become more common in older and damaged bone which is at greatest risk of fracture. Visualization and measurement of three-dimensional lamellar shape over hundreds of microns is needed to provide data for accurate micromechanical simulations. Treating secondary osteonal lamellae as a ‘stack of cones’ rather than ‘nested cylinders’ may have important implications for our appreciation of bone's function as a load-bearing tissue and of its behaviour in fracture
    • …
    corecore