28 research outputs found

    An NMRA-like protein regulates gene expression in Phytophthora capsici to drive the infection cycle on tomato

    Get PDF
    Phytophthora spp. cause devastating disease epidemics on important crop plants and pose a grave threat to global crop production. Critically, Phytophthora pathogens represent a distinct evolutionary lineage in which pathogenicity has been acquired independently. Therefore, there is an urgent need to understand and disrupt the processes that drive infection if we aspire to defeat oomycete pathogens in the field. One area that has received little attention thus far in this respect is the regulation of Phytophthora gene expression during infection. Here, we characterize PcNMRAL1 (Phyca11_505845), a homolog of the Aspergillus nidulans nitrogen metabolite repression regulator NMRA and demonstrate a role for this protein in progression of the Phytophthora capsici infection cycle. PcNmrAL1 is coexpressed with the biotrophic marker gene PcHmp1 (haustorial membrane protein 1) and, when overexpressed, extends the biotrophic infection stage. Microarray analyses revealed that PcNmrAL1 overexpression in P. capsici leads to large-scale transcriptional changes during infection and in vitro. Importantly, detailed analysis reveals that PcNmrAL1 overexpression induces biotrophy-associated genes while repressing those associated with necrotrophy. In addition to factors controlling transcription, translation, and nitrogen metabolism, PcNMRAL1 helps regulate the expression of a considerable effector repertoire in P. capsici. Our data suggests that PcNMRAL1 is a transcriptional regulator that mediates the biotrophy to necrotrophy transition. PcNMRAL1 represents a novel factor that may drive the Phytophthora disease cycle on crops. This study provides the first insight into mechanisms that regulate infection-related processes in Phytophthora spp. and provides a platform for further studies aimed at disabling pathogenesis and preventing crop losses. </jats:p

    Conidial Morphogenesis and Septin-Mediated Plant Infection Require Smo1, a Ras GTPase-Activating Protein in Magnaporthe oryzae

    Get PDF
    The pathogenic life cycle of the rice blast fungus Magnaporthe oryzae involves a series of morphogenetic changes, essential for its ability to cause disease. The smo mutation was identified > 25 years ago, and affects the shape and development of diverse cell types in M. oryzae, including conidia, appressoria, and asci. All attempts to clone the SMO1 gene by map-based cloning or complementation have failed over many years. Here, we report the identification of SMO1 by a combination of bulk segregant analysis and comparative genome analysis. SMO1 encodes a GTPase-activating protein, which regulates Ras signaling during infection-related development. Targeted deletion of SMO1 results in abnormal, nonadherent conidia, impaired in their production of spore tip mucilage. Smo1 mutants also develop smaller appressoria, with a severely reduced capacity to infect rice plants. SMO1 is necessary for the organization of microtubules and for septin-dependent remodeling of the F-actin cytoskeleton at the appressorium pore. Smol physically interacts with components of the Ras2 signaling complex, and a range of other signaling and cytoskeletal components, including the four core septins. SMO1 is therefore necessary for the regulation of RAS activation required for conidial morphogenesis and septin-mediated plant infection

    Finished Genome of the Fungal Wheat Pathogen Mycosphaerella graminicola Reveals Dispensome Structure, Chromosome Plasticity, and Stealth Pathogenesis.

    Get PDF
    The plant-pathogenic fungus Mycosphaerella graminicola (asexual stage: Septoria tritici) causes septoria tritici blotch, a disease that greatly reduces the yield and quality of wheat. This disease is economically important in most wheat-growing areas worldwide and threatens global food production. Control of the disease has been hampered by a limited understanding of the genetic and biochemical bases of pathogenicity, including mechanisms of infection and of resistance in the host. Unlike most other plant pathogens, M. graminicola has a long latent period during which it evades host defenses. Although this type of stealth pathogenicity occurs commonly in Mycosphaerella and other Dothideomycetes, the largest class of plant-pathogenic fungi, its genetic basis is not known. To address this problem, the genome of M. graminicolawas sequenced completely. The finished genome contains 21 chromosomes, eight of which could be lost with no visible effect on the fungus and thus are dispensable. This eight-chromosome dispensome is dynamic in field and progeny isolates, is different from the core genome in gene and repeat content, and appears to have originated by ancient horizontal transfer from an unknown donor. Synteny plots of the M. graminicola chromosomes versus those of the only other sequenced Dothideomycete, Stagonospora nodorum, revealed conservation of gene content but not order or orientation, suggesting a high rate of intra-chromosomal rearrangement in one or both species. This observed “mesosynteny” is very different from synteny seen between other organisms. A surprising feature of the M. graminicolagenome compared to other sequenced plant pathogens was that it contained very few genes for enzymes that break down plant cell walls, which was more similar to endophytes than to pathogens. The stealth pathogenesis of M. graminicola probably involves degradation of proteins rather than carbohydrates to evade host defenses during the biotrophic stage of infection and may have evolved from endophytic ancestors

    Mutagenesis and Functional Studies with Succinate Dehydrogenase Inhibitors in the Wheat Pathogen Mycosphaerella graminicola

    Get PDF
    A range of novel carboxamide fungicides, inhibitors of the succinate dehydrogenase enzyme (SDH, EC 1.3.5.1) is currently being introduced to the crop protection market. The aim of this study was to explore the impact of structurally distinct carboxamides on target site resistance development and to assess possible impact on fitness

    Gene Expression Profiles of Blumeria graminis Indicate Dynamic Changes to Primary Metabolism during Development of an Obligate Biotrophic Pathogen

    No full text
    cDNA microarrays of Blumeria graminis f sp hordei transcript profiles during the asexual development cycle reveal the dynamics of global gene expression as the fungus germinates, penetrates, feeds on its host, and produces masses of conidia for dispersal. The expression profiles of genes encoding enzymes involved in primary metabolism show that there is a striking degree of coordinate regulation of some of the genes in the same pathway. In one example, genes encoding several glycolytic enzymes are significantly upregulated as mature appressoria form and also in infected epidermis, which contain fungal haustoria. In another example, mRNAs for lipid degrading enzymes are initially expressed at high levels in the conidia and the early germination stages and decrease significantly later. We discuss these results and draw inferences on the metabolic status of this obligate biotrophic fungus as it infects its host and completes its life cycle

    Dual Effects of Plant Steroidal Alkaloids on Saccharomyces cerevisiae

    No full text
    Many plant species accumulate sterols and triterpenes as antimicrobial glycosides. These secondary metabolites (saponins) provide built-in chemical protection against pest and pathogen attack and can also influence induced defense responses. In addition, they have a variety of important pharmacological properties, including anticancer activity. The biological mechanisms underpinning the varied and diverse effects of saponins on microbes, plants, and animals are only poorly understood despite the ecological and pharmaceutical importance of this major class of plant secondary metabolites. Here we have exploited budding yeast (Saccharomyces cerevisiae) to investigate the effects of saponins on eukaryotic cells. The tomato steroidal glycoalkaloid α-tomatine has antifungal activity towards yeast, and this activity is associated with membrane permeabilization. Removal of a single sugar from the tetrasaccharide chain of α-tomatine results in a substantial reduction in antimicrobial activity. Surprisingly, the complete loss of sugars leads to enhanced antifungal activity. Experiments with α-tomatine and its aglycone tomatidine indicate that the mode of action of tomatidine towards yeast is distinct from that of α-tomatine and does not involve membrane permeabilization. Investigation of the effects of tomatidine on yeast by gene expression and sterol analysis indicate that tomatidine inhibits ergosterol biosynthesis. Tomatidine-treated cells accumulate zymosterol rather than ergosterol, which is consistent with inhibition of the sterol C(24) methyltransferase Erg6p. However, erg6 and erg3 mutants (but not erg2 mutants) have enhanced resistance to tomatidine, suggesting a complex interaction of erg mutations, sterol content, and tomatidine resistance

    The Zymoseptoria tritici ORFeome: A Functional Genomics Community Resource

    Get PDF
    Libraries of protein-encoding sequences can be generated by identification of open reading frames (ORFs) from a genome of choice that are then assembled into collections of plasmids termed ORFeome libraries. These represent powerful resources to facilitate functional genomic characterization of genes and their encoded products. Here, we report the generation of an ORFeome for Zymoseptoria tritici, which causes the most serious disease of wheat in temperate regions of the world. We screened the genome of strain IP0323 for high confidence gene models, identifying 4,075 candidates from 10,933 predicted genes. These were amplified from genomic DNA, were cloned into the Gateway entry vector pDONR207, and were sequenced, providing a total of 3,022 quality-controlled plasmids. The ORFeome includes genes predicted to encode effectors (n = 410) and secondary metabolite biosynthetic proteins (n = 171) in addition to genes residing at dispensable chromosomes (n = 122) or those that are preferentially expressed during plant infection (n = 527). The ORFeome plasmid library is compatible with our previously developed suite of Gateway destination vectors, which have various combinations of promoters, selection markers, and epitope tags. The Z. tritici ORFeome constitutes a powerful resource for functional genomics and offers unparalleled opportunities to understand the biology of Z. tritici.[Formula: see text] Copyright © 2019 The Author(s). This is an open access article distributed under the CC BY 4.0 International license
    corecore