120 research outputs found

    A higher order perfectly matched layer formulation for finite-difference time-domain seismic wave modeling

    Get PDF
    We have developed a higher order perfectly matched layer (PML) formulation to improve the absorption performance for finite-difference time-domain seismic modeling. First, we outlined a new unsplit “correction” approach, which allowed for traditional, first-order PMLs to be added directly to existing codes in a straightforward manner. Then, using this framework, we constructed a PML formulation that can be used to construct higher order PMLs of arbitrary order. The greater number of degrees of freedom associated with the higher order PML allow for enhanced flexibility of the PML stretching functions, thus potentially facilitating enhanced absorption performance. We found that the new approach can offer increased elastodynamic absorption, particularly for evanescent waves. We also discovered that the extra degrees of freedom associated with the higher order PML required careful optimization if enhanced absorption was to be achieved. Furthermore, these extra degrees of freedom increased the computational requirements in comparison with first-order schemes. We reached our formulations using one compact equation thus increasing the ease of implementation. Additionally, the formulations are based on a recursive integration approach that reduce PML memory requirements, and do not require special consideration for corner regions. We tested the new formulations to determine their ability to absorb body waves and surface waves. We also tested standard staggered grid stencils and rotated staggered grid stencils

    Multi-index probabilistic anomaly detection for large span bridges using Bayesian estimation and evidential reasoning

    Get PDF
    To measure uncertainties within anomaly detection and distinguish sensor faults from anomalous events, a multi-index probabilistic anomaly detection approach is proposed for large span bridges based on Bayesian estimation and evidential reasoning. To avoid false detection raised by signal spikes, an energy index is first defined and extracted from pre-processed measurements, including missing data recovery and thermal response separation. Then, a probabilistic index, namely, certainty degree, is derived from probability density functions of detection triggers – extreme values predicted by using Bayesian estimation of the generalized Pareto distribution. To distinguish sensor faults from anomalous scenarios, evidential reasoning is applied to incorporate multiple certainty degrees into a joint one under the assumption that the probability of multi-sensor failing simultaneously is extremely low. Specifically, a large joint certainty degree indicates a high occurrence probability of anomalous scenarios, while a small one together with a large individual certainty degree depicts a high probability of sensor faults. Finally, the effectiveness of the proposed anomaly detection method is validated through structural health monitoring data from the Nanjing Dashengguan Yangtze River Bridge. Measurements from four sensors, that is, three cable forces and one deflection, are selected to detect anomalies based on their high pair-wise correlations. Two case studies are presented, namely, sensor fault detection and snow disaster detection. The sensor fault is detected through a certainty degree of almost 100% for the individual index and a joint certainty degree of nearly 0. The snowstorm is detected by a joint certainty degree of 36.82%

    Massive amplitudes on the Coulomb branch of N=4 SYM

    Full text link
    We initiate a systematic study of amplitudes with massive external particles on the Coulomb-branch of N=4 super Yang Mills theory: 1) We propose that (multi-)soft-scalar limits of massless amplitudes at the origin of moduli space can be used to determine Coulomb-branch amplitudes to leading order in the mass. This is demonstrated in numerous examples. 2) We find compact explicit expressions for several towers of tree-level amplitudes, including scattering of two massive W-bosons with any number of positive helicity gluons, valid for all values of the mass. 3) We present the general structure of superamplitudes on the Coulomb branch. For example, the n-point "MHV-band" superamplitude is proportional to a Grassmann polynomial of mixed degree 4 to 12, which is uniquely determined by supersymmetry. We find explicit tree-level superamplitudes for this MHV band and for other simple sectors of the theory. 4) Dual conformal generators are constructed, and we explore the dual conformal properties of the simplest massive amplitudes. Our compact expressions for amplitudes and superamplitudes should be of both theoretical and phenomenological interest; in particular the tree-level results carry over to truncations of the theory with less supersymmetry.Comment: 29 pages, 1 figur

    The Microphenotron: a robotic miniaturized plant phenotyping platform with diverse applications in chemical biology

    Get PDF
    Background Chemical genetics provides a powerful alternative to conventional genetics for understanding gene function. However, its application to plants has been limited by the lack of a technology that allows detailed phenotyping of whole-seedling development in the context of a high-throughput chemical screen. We have therefore sought to develop an automated micro-phenotyping platform that would allow both root and shoot development to be monitored under conditions where the phenotypic effects of large numbers of small molecules can be assessed. Results The ‘Microphenotron’ platform uses 96-well microtitre plates to deliver chemical treatments to seedlings of Arabidopsis thaliana L. and is based around four components: (a) the ‘Phytostrip’, a novel seedling growth device that enables chemical treatments to be combined with the automated capture of images of developing roots and shoots; (b) an illuminated robotic platform that uses a commercially available robotic manipulator to capture images of developing shoots and roots; (c) software to control the sequence of robotic movements and integrate these with the image capture process; (d) purpose-made image analysis software for automated extraction of quantitative phenotypic data. Imaging of each plate (representing 80 separate assays) takes 4 min and can easily be performed daily for time-course studies. As currently configured, the Microphenotron has a capacity of 54 microtitre plates in a growth room footprint of 2.1 m², giving a potential throughput of up to 4320 chemical treatments in a typical 10 days experiment. The Microphenotron has been validated by using it to screen a collection of 800 natural compounds for qualitative effects on root development and to perform a quantitative analysis of the effects of a range of concentrations of nitrate and ammonium on seedling development. Conclusions The Microphenotron is an automated screening platform that for the first time is able to combine large numbers of individual chemical treatments with a detailed analysis of whole-seedling development, and particularly root system development. The Microphenotron should provide a powerful new tool for chemical genetics and for wider chemical biology applications, including the development of natural and synthetic chemical products for improved agricultural sustainability

    Coral Colonisation of an Artificial Reef in a Turbid Nearshore Environment, Dampier Harbour, Western Australia

    Get PDF
    A 0.6 hectare artificial reef of local rock and recycled concrete sleepers was constructed in December 2006 at Parker Point in the industrial port of Dampier, western Australia, with the aim of providing an environmental offset for a nearshore coral community lost to land reclamation. Corals successfully colonised the artificial reef, despite the relatively harsh environmental conditions at the site (annual water temperature range 18-32°C, intermittent high turbidity, frequent cyclones, frequent nearby ship movements). Coral settlement to the artificial reef was examined by terracotta tile deployments, and later stages of coral community development were examined by in-situ visual surveys within fixed 25 x 25 cm quadrats on the rock and concrete substrates. Mean coral density on the tiles varied from 113 ± 17 SE to 909 ± 85 SE per m2 over five deployments, whereas mean coral density in the quadrats was only 6.0 ± 1.0 SE per m2 at eight months post construction, increasing to 24.0 ± 2.1 SE per m2 at 62 months post construction. Coral taxa colonising the artificial reef were a subset of those on the surrounding natural reef, but occurred in different proportions-Pseudosiderastrea tayami, Mycedium elephantotus and Leptastrea purpurea being disproportionately abundant on the artificial reef. Coral cover increased rapidly in the later stages of the study, reaching 2.3 ± 0.7 SE % at 62 months post construction. This study indicates that simple materials of opportunity can provide a suitable substrate for coral recruitment in Dampier Harbour, and that natural colonisation at the study site remains sufficient to initiate a coral community on artificial substrate despite ongoing natural and anthropogenic perturbations. © 2013 Blakeway et al

    Sepsis: when a simple infection becomes deadly

    Get PDF
    The immune system plays a crucial role in maintaining a healthy body by working around the clock to recognize and respond to infection. Inflammation is part of the immune system’s protective response to an infection. The inflammatory response is incredibly powerful, so much so that it can damage the body’s cells if it is not tightly controlled. Sometimes, inflammation affects the whole body—this is called sepsis. The powerful and complex mechanisms in place to wipe out the infection can cause serious damage to healthy cells and tissues. Uncontrolled inflammation can cause irreversible damage to the body’s organs, such as the kidneys, eventually causing organs to shut down. If sepsis is not treated rapidly, it can lead to death. In this article, we describe the symptoms and diagnosis of sepsis and some of the current research being performed to better understand this dangerous process

    High activity redox catalysts synthesized by chemical vapor impregnation

    Get PDF
    The use of precious metals in heterogeneous catalysis relies on the preparation of small nanoparticles that are stable under reaction conditions. To date, most conventional routes used to prepare noble metal nanoparticles have drawbacks related to surface contamination, particle agglomeration, and reproducibility restraints. We have prepared titania-supported palladium (Pd) and platinum (Pt) catalysts using a simplified vapor deposition technique termed chemical vapor impregnation (CVI) that can be performed in any standard chemical laboratory. These materials, composed of nanoparticles typically below 3 nm in size, show remarkable activity under mild conditions for oxidation and hydrogenation reactions of industrial importance. We demonstrate the preparation of bimetallic Pd–Pt homogeneous alloy nanoparticles by this new CVI method, which show synergistic effects in toluene oxidation. The versatility of our CVI methodology to be able to tailor the composition and morphology of supported nanoparticles in an easily accessible and scalable manner is further demonstrated by the synthesis of Pdshell–Aucore nanoparticles using CVI deposition of Pd onto preformed Au nanoparticles supported on titania (prepared by sol immobilization) in addition to the presence of monometallic Au and Pd nanoparticles

    Integrands for QCD rational terms and N=4 SYM from massive CSW rules

    Full text link
    We use massive CSW rules to derive explicit compact expressions for integrands of rational terms in QCD with any number of external legs. Specifically, we present all-n integrands for the one-loop all-plus and one-minus gluon amplitudes in QCD. We extract the finite part of spurious external-bubble contributions systematically; this is crucial for the application of integrand-level CSW rules in theories without supersymmetry. Our approach yields integrands that are independent of the choice of CSW reference spinor even before integration. Furthermore, we present a recursive derivation of the recently proposed massive CSW-style vertex expansion for massive tree amplitudes and loop integrands on the Coulomb-branch of N=4 SYM. The derivation requires a careful study of boundary terms in all-line shift recursion relations, and provides a rigorous (albeit indirect) proof of the recently proposed construction of massive amplitudes from soft-limits of massless on-shell amplitudes. We show that the massive vertex expansion manifestly preserves all holomorphic and half of the anti-holomorphic supercharges, diagram-by-diagram, even off-shell.Comment: 30 pages, many figure
    corecore