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Abstract
To measure uncertainties within anomaly detection and distinguish
sensor faults from anomalous events, a multi-index probabilistic
anomaly detection approach is proposed for large span bridges based
on Bayesian estimation and evidential reasoning. To avoid false
detection raised by signal spikes, an energy index is first defined and
extracted from pre-processed measurements, including missing data
recovery and thermal response separation. Then, a probabilistic index,
namely certainty degree, is derived from probability density functions
of detection triggers - extreme values predicted by using Bayesian
estimation of the generalized Pareto distribution. To distinguish sensor
faults from anomalous scenarios, evidential reasoning is applied to
incorporate multiple certainty degrees into a joint one under the
assumption that the probability of multi-sensor failing simultaneously
is extremely low. Specifically, a large joint certainty degree indicates
a high occurrence probability of anomalous scenarios, while a small
one together with a large individual certainty degree depicts a high
probability of sensor faults. Finally, the effectiveness of the proposed
anomaly detection method is validated through structural health
monitoring data from the Nanjing Dashengguan Yangtze River Bridge.
Measurements from four sensors, i.e., three cable forces and one
deflection, are selected to detect anomalies based on their high pair-
wise correlations. Two case studies are presented, namely sensor fault
detection and snow disaster detection. The sensor fault is detected
through a certainty degree of almost 100% for the individual index and
a joint certainty degree of nearly 0. The snowstorm is detected by a
joint certainty degree of 36.82%.
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Xu, Forde et al. 3

Introduction6

Prognostic health monitoring is a mechanism of preventive measures7

to deliver comprehensive and tailored solutions for the industrial health8

system, management, and prediction1,2. In civil engineering, structural9

health monitoring (SHM) systems are often applied to large-scale civil10

infrastructures, especially large span bridges, to measure environmental11

factors, external loads, and structural responses3–5.12

Based on measurements from SHM systems, anomaly detection for13

large span bridges has been broadly studied all over the world within14

recent decades. Modal parameters (e.g., curvature mode shapes) were15

explored to detect structural damages relying on their sensitivities to16

defects such as drops in stiffness6–8. Although their effectiveness was17

theoretically and experimentally validated, challenges emerged when18

applied to practical applications owing to the contamination of signal19

noises and impact of environmental variations9. For instance, fluctuations20

of dynamic characteristics caused by temperatures were larger than those21

induced by structural damages for a cable-stayed bridge10.22

In addition to dynamic responses, scholars explored to take advantages23

of static responses (e.g., strains) to detect anomalies. Yu et al.11 used24

girder deflection measurements from a beam bridge to detect damages25

via wavelet transform and Lipschitz exponent. Hua et al.12 considered26

variations of cable forces to detect damages for a cable-stayed bridge27

under the rationale that damages induced a force redistribution in stay28

cables. Similar to dynamic fingerprints, environmental factor, especially29

temperatures, is a major interference in anomaly detection by using static30

responses.31

Methodologies associated with thermal effect modelling and separation32

were well studied in recent years, such as regression models13,14, wavelet33

transform15,16, blind source separation17, numerical models18,19, Bayesian34

models20,21 and so forth. In view of the impact of thermal effects,35

temperature-driven anomaly detection techniques were increasingly36
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4 Structural Health Monitoring XX(X)

developed. Xu et al.22 established a two-level anomaly detection37

framework using mid-span deflection measurements from a large span38

suspension bridge, where the multi-resolution wavelet-based method39

was used to separate thermal responses. Zhu et al.23 improved the40

efficiency of moving principal component analysis for anomaly detection41

by introducing blind source separation to identify thermal strains. Tome et42

al.24 and Fan et al.25 presented a damage detection strategy for a large43

cable-stayed bridge, where the environmental effects were suppressed44

using cointegration. Huang et al.26 proposed a strain-based anomaly45

detection method, where the correlation model between main girder46

strains and temperatures was built up.47

Furthermore, existing anomaly detection methodologies were mostly48

in the deterministic context, dismissing the inherent uncertainty within49

the detection course27. However, uncertainties are inevitably involved in50

the detection process induced by environmental variability, measurement51

noises and parameter estimation. In this regard, probabilistic approaches52

are preferable in detecting anomalies for large span bridges. Bayesian53

inference, a powerful tool in dealing with uncertainties, has been54

increasingly adopted to quantify uncertainties in engineering fields. Ni et55

al.21 took advantages of expansion joint displacements to detect damages56

under the Bayesian context, where in-situ measurements from a cable-57

stayed bridge were employed to validate the effectiveness of the proposed58

method. Yu and Cai28 introduced Bayesian methods to predict extreme59

structural responses subject to traffic loads to improve the reliability of60

bridge condition assessment, where measurements from the new I-1061

twin span bridge were used to verify the effectiveness of the proposed62

method. Xu et al.29 applied Bayesian estimation to extreme value analytic63

to estimate probabilistic distributions of site-specific extreme loads for a64

cable-stayed bridge. Therefore, Bayesian inference is a promising way to65

address the uncertain issue within the anomaly detection process.66

However, owing to inefficient manufacture, harsh operation environ-67

ment and performance degradation, sensor faults are evolving as an68

increasing concern in anomaly detection and condition assessment tech-69

niques30. Most existing anomaly detection methods were carried out70

with the assumption that the studied sensors were all in working order.71

However, anomaly detection is often falsely triggered by sensor faults72

rather than anomalous scenarios in practice. On the other hand, studies73
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regarding sensor fault diagnosis were also well investigated, which took74

root in the redundancy of information. Based on the source of redundant75

information, two types of methods are defined, namely the model-based76

and data-driven. The model-based method uses the redundancy provided77

by mathematical models, while the data-driven relies on the monitored78

data from remaining or extra sensors31. Within existing sensor fault79

diagnosis, the structure was usually assumed to be intact, however, there80

could be a scenario that both structural damages and sensor faults coincide81

resulting in a coupling problem32. Currently, anomaly detection in civil82

engineering detects general anomalous signals, including sensor faults and83

structural damages33,34. However, sensor faults and structural damages are84

subject to different coping strategies, respectively. For structural damages,85

a prompt inspection is necessary to ensure the structural and operational86

safety of the bridge. For sensor faults, a replacement plan should be87

made, whose priority is much lower than that of structural damages. In88

this regard, distinguishing sensor faults from structural damages will help89

owners to make proper maintenance decisions. To the best of the authors’90

knowledge, rare investigation has been carried out for anomaly detection91

of large span bridges considering the interference of sensor faults31,33,34.92

In this study, a multi-index probabilistic anomaly detection approach93

for large span bridges will be developed under the context of Bayesian94

inference and evidential reasoning. Multiple static responses are first95

selected for anomaly detection based on their pair-wise correlations. To96

avoid the influence of spikes, an energy index is proposed within a97

determined time window. Then, the generalized Pareto distribution (GPD),98

one of extreme value analysis tools, is adopted to estimate probabilistic99

distributions of detection triggers, where Bayesian estimation is used to100

calculate probability density functions (PDFs) of triggers. Subsequently,101

a probabilistic index, certainty degree, is derived from PDFs of triggers102

to rate uncertainties. To resolve the coupling between sensor faults and103

anomalous scenarios, evidential reasoning is employed to incorporate104

multiple certainty degrees into a joint one. Finally, the effectiveness of105

the proposed anomaly detection method is verified through measurements106

from a large span cable-stayed bridge.107
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6 Structural Health Monitoring XX(X)

Methodology of multi-index probabilistic anomaly detection108

The general flowchart for the multi-index probabilistic anomaly detection109

is presented in Figure 1. Measurements of multiple sensors are collected110

from SHM systems to detect anomalies based on their pair-wise111

correlations. Missing data are filled to enhance the signal continuity35,36.112

Thermal compensation is completed to separate thermal responses15,37.113

Once obtaining the pre-processed signals, energy index is extracted to114

achieve robust detection performance, where two parameters (i.e., length115

of window and number of overlaps) need to be determined. Based on116

relatively long-term energy indices, thresholds for the GPD analysis117

are determined. Bayesian estimation is employed to figure out PDFs of118

detection triggers, and a probabilistic index, certainty degree, is derived119

from PDFs to measure uncertainties. To address the coupling between120

sensor faults and anomaly scenarios, evidential reasoning is used to121

incorporate multiple certainty degrees into a joint one. It is assumed that122

the probability of multi-sensor failing simultaneously is extremely low123

since each sensor operates independently, while the anomalous scenario124

always triggers multiple indices at the same time owing to the redundancy125

between sensors. In this regard, although the sensor fault might lead to126

a high certainty degree of a single index, the joint certainty degree will127

stay at a relatively low level since the other indices are not triggered. On128

the other hand, the anomalous scenario is subject to a relatively high joint129

certainty degree since most of the indices are triggered.130

Data collection and pre-processing131

Most of existing literature associated with static index-based anomaly132

detection methods focused on a single index, such as strains23,133

deflections22 and cable forces25. Compared with the single index-based134

anomaly detection, the multi-index anomaly detection has potential to135

detect anomalies as more as possible. In practice, various sensors are136

devised to monitor environmental factors, external loads, and structural137

responses, providing a data foundation for the multi-index anomaly138

detection. However, the multiple indices should be selected carefully to139

achieve the goal to distinguish sensor faults from anomalous scenarios.140

As discussed, sensor fault detection relies on redundant information. If the141

selected indices are all independent from each other, it is natural that the142

detection result of each index is discrepancy. In this regard, the evidential143
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Figure 1. Flowchart of the multi-index probabilistic anomaly detection method, including data
collection and pre-processing, determination of probabilistic triggers, and multi-index
evidential reasoning.

reasoning is unnecessary, and it is impossible to distinguish sensor faults144

from anomalous scenarios due to lack of redundant information. Thus,145

prior to carrying out multi-index anomaly detection, high correlated146

multiple indices should be selected to provide redundant information.147

Based on experience, the indices responding to outer actions accordingly148

will have a relatively high correlation. For example, the cable force and149

deflection around mid-span area will have relatively strong correlation150

since they all yield to the mid-span girder deformation.151

In general, the correlation is indicated by the scale of Pearson152

correlation coefficient (R) as: very high correlation (0.8 ≤ |R| ≤ 1.0),153

High correlation (0.6 ≤ |R| < 0.8), moderate correlation (0.4 ≤ |R| <154

0.6), low correlation (0.2 ≤ |R| < 0.4), and very low correlation (0 <155

|R| < 0.2). If the correlation standard is set too high, few indices are156

qualified for the multi-index anomaly detection. In contrast, if the standard157

is set too low, the redundant information among the selected indices is158

not enough to distinguish sensor faults from anomalous scenarios. In this159

regard, the determination of correlation threshold is a trade-off problem.160
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8 Structural Health Monitoring XX(X)

In this study, we set the threshold as high correlation (|R| ≥ 0.6) for the161

correlation analytic.162

Before detecting anomalies, signals are required to be pre-processed163

to improve their quality. Existing missing data recovery methods include164

moving time window mean imputation38, maximum likelihood39, artificial165

neural networks40 and Bayesian inference approach41. In this study, since166

a small portion of discrete data are missed, the moving time window mean167

imputation is adopted herein38.168

Thermal effect is not the response of interest for anomaly detection,169

which may cover signal fluctuations induced by anomalous events. Herein,170

the multi-resolution wavelet-based method is applied to separate thermal171

responses from the recorded data15.172

Determination of probabilistic triggers173

Index extraction Spike is a common issue in measured SHM data,174

generated from capacitive or inductive noise in the analogue signal and175

communication errors in asynchronous communication protocols42. In176

general, the spike within signals is non-physical event with an amplitude177

of at least twice that of the background activity, and a short duration of178

≤ 200ms. The spike will introduce false detection in the single signal-179

based anomaly detection since the amplitudes of spikes further exceed the180

defined anomaly detection triggers43.181

To achieve robust performance in anomaly detection, an energy index182

in time domain is extracted from the measured data in this study22. The183

index is defined as the average energy within a determined time window,184

which is expressed as185

Id(i) =

{∑m
t=1 x

2(t)

m
, i = 1∑mi−p

t=(i−1)m+1−p
x2(t)

m
, i > 1

(1)

where x(t) is the time history, m is the length of window, and p is186

the number of overlaps. Compared with single signal-based indices, the187

energy index extracts the feature from a determined time window to188

achieve peak clipping, which in theory has higher tolerance for signal189

spikes.190

GPD analysis In general, the trigger is supposed to be the extreme value191

of the defined index under normal operational circumstances44. The block192
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maxima method was often used to predict extreme values45, however, only193

annual maxima are adopted for the extreme value estimation in the block194

maxima method. Considering the limited available monitored data, the195

GPD is used to estimate extreme values of indices, which has a more196

efficient data utilization rate46.197

The GPD is a family of continuous probability distributions, which198

are often used to model the tails of another distribution via peak-over-199

threshold technique47. The energy index Id(i) is supposed to obey a200

certain distribution. The tails of ~Id, i.e., the excess s(i) = Id(i)− u0,201

are modelled by the GPD, where u0 is the threshold and s(i) > 0. The202

cumulative density function of the GPD subject to an excess s(i) takes the203

form22
204

G(s(i); σ, ξ) =

{
1− (1 + ξ s(i)

σ
)−1/ξ, ξ 6= 0

1− exp (− s(i)
σ

), ξ = 0
(2)

where σ is the scale parameter, and ξ is the shape parameter. The205

corresponding PDF is206

g(s(i); σ, ξ) =
1

σ
(1 +

ξs(i)

σ
)−1−1/ξ (3)

for s(i) ≥ 0 when ξ > 0, and 0 ≤ s(i) ≤ −σ/ξ when ξ < 0. When ξ = 0,207

the PDF is208

g(s(i); σ, ξ) =
1

σ
exp(−s(i)

σ
) (4)

for s(i) ≥ 0.209

The basic steps to determine probabilistic detection triggers by using the210

GPD are as follows:211

I Re-sampling: To determine triggers by using the GPD, samples are212

required to be independently and identically distributed47. In this213

paper, maxima of the energy index within 24 hours are adopted for214

further discussions.215

II Threshold: It is a crucial step to set an appropriate threshold. If216

the threshold is set too high, the number of out-of-samples is217

small, resulting in statistical uncertainty. On the other hand, if the218

threshold is too low, the excess quantity differs significantly from219

the maximum value, leading to a biased estimator. The mean excess220
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10 Structural Health Monitoring XX(X)

function of the GPD is introduced herein to determine a proper221

threshold, which is48
222

e(u) =
1

Nu

Nu∑
i=1

[Id(i)− u]

=
ξ

1− ξ
u+

σ

1− ξ

(5)

in whichNu denotes the number of excesses over the threshold, and u223

is the threshold. The mean excess function is supposed to be a linear224

function of the excess quantity. However, the transition from the225

curve to the straight line is not a point but an interval. To overcome226

this shortcoming, the root mean square error (RMSE) is introduced227

as228

RMSE =

√∑
[e(u)− Le(u)]2

n
(6)

where Le(u) is the linear fit of the mean residual life above the229

threshold, and n is the number of candidate thresholds. The minimum230

value of RMSE indicates the best linear fit of mean residual life and231

threshold, which corresponds to the optimal threshold.232

III Parameter: According to the daily maxima, the posterior distributions233

of scale and shape parameters can be estimated by using Bayesian234

estimation. One can refer to next section for detailed descriptions.235

IV Trigger: The extreme value subject to a certain quantile is regarded236

as the trigger for anomaly detection. Within the reference period of T237

years, the cumulative probability p corresponding to an exceedance238

probability rate Pr is239

p = 1−
T√
Pr (7)

The trigger for anomaly detection is expressed as240

Ta = u0 +
σ̂

ξ̂
{[Ntotal

Nu

(1− p)]−ξ̂ − 1} (8)

where u0 is the threshold, σ̂ is the estimated scale parameter,ξ̂ is the241

estimated shape parameter, Ntotal is the number of all samples, and242

Nu is the number of excesses. Generally, the trigger is defined as the243
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Xu, Forde et al. 11

quantile value corresponding to the 95% guarantee rate within a 100-244

year reference period (i.e., a return period of 1950 years), which is in245

line with the design code.246

V Certainty degree: Since the uncertainty of scale and shape247

parameters, the potential triggers will vary and follow a certain248

distribution, termed as Ta ∼ f(α, β), where α and β are the249

parameters defining the distribution. Given the value of an index250

Id(i), the certainty degree for occurrence of an anomalous scenario251

is252

mi =

∫ Id(i)

Ta=0

f(Ta;α, β)dTa (9)

Bayesian estimation Bayesian estimation is adopted in this study to253

measure uncertainties of the predicted triggers. Based on Bayes’ theorem,254

the posterior distribution of the parameters is21
255

p(~θ;~s) =
L(~θ;~s)p(~θ)∫
L(~θ;~s)p(~θ)d~θ

(10)

256

L(~θ;~s) =
Nu∏
i=1

g(s(i); ~θ) (11)

where ~θ is the parameter vector of the GPD, ~s is the excess vector, p(~θ;~s)257

is the posterior distribution of the parameter vector, p(~θ) is the prior258

distribution, L(~θ;~s) is the likelihood function, g(s(i); ~θ) is the PDF of259

the GPD, s(i) is the ith excess, and Nu is the number of excesses.260

Under Bayesian inference, the prior distribution indicates prior261

knowledge regarding the parameters, which is independent from existing262

observations. Since litter or no prior knowledge is known, a flat263

distribution is used.264

The Markov Chain Monte Carlo (MCMC) sampling can obtain the265

posterior distribution of the GPD parameters. Herein, the Metropolis-266

within-Gibbs (MG) sampler is employed, and the specific steps could refer267

to the reference49.268

After a period of iterations, the Markov chain converges to a stationary269

distribution. The period of iterations before the Markov chain convergence270

is called the burn-in period. The simulated values in the burn-in period271
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12 Structural Health Monitoring XX(X)

cannot be treated as samples to form the posterior distribution. Excluding272

the burn-in period, the remaining chain is used to discuss the stochastic273

characteristics of the posterior distributions.274

The posterior distribution of the predicted triggers in theory is275

p(Ta − u0;~s) =

∫
g(Ta − u0; ~θ)p(~θ;~s)d~θ (12)

where Ta is the predicted trigger, g is the PDF of the GPD, and p is the276

posterior distribution of the GPD parameters. In practice, the posterior277

distribution of triggers is generated by using the following procedure:278

I For i = 1 : M , given the parameters from the posterior distributions,279

a sample of triggers is calculated according to equation (8).280

II Repeat step 1 until i reaches M , the obtained samples will be a281

realization of size M from the posterior distribution of predictive282

triggers.283

Multi-index evidential reasoning284

Evidential reasoning is one of the most used decision-making tools to deal285

with uncertain problems caused by randomness and fuzziness without286

prior probability and conditional probability density50,51. However, the287

conventional Dempster-Shafer evidence theory has limitations in dealing288

with conflicts52,53. To overcome such drawbacks, scholars put forward289

various improved methodologies. In general, existing methods can be290

classified into two categories: (1) one is to modify the classic combination291

rules of evidence theory to relocate conflicts54; and (2) the other is292

to modify the conflicted evidence before fusion without changing the293

combination rules55. Nevertheless, existing evidence research ignores to294

rate conflict degrees of evidence, which is supposed to be prior before the295

fusion of conflicted evidence.296

In the context of multi-index anomaly detection system, each detection297

index reflects system status in its own way. Conflicts between indices298

lead to difficulties for decision-makings. Yet on the other hand, each299

single index has its own limitations in anomaly detection owing to its300

limited information. While a joint index, derived from multiple indices,301

can achieve a more robust anomaly detection performance. Herein,302

evidential reasoning is determined as the fusion operator based on303
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Figure 2. General steps of multi-index combination using evidential reasoning based on
evidence similarities.

evidence similarities, and the specific steps for multi-index combination304

are shown in Figure 2.305

It is assumed that the probability of multi-sensor failing simultaneously306

is extremely low since each sensor operates independently, while the307

anomalous scenario always triggers multiple indices at the same time308

owing to information redundancy. In this regard, although the sensor309

fault might lead to a high certainty degree of a single index, the joint310

certainty degree will stay at a relatively low level since the other indices311

are not triggered. On the other hand, the anomalous scenario is subject312

to a relatively high joint certainty degree since most of the indices are313

triggered. Three detection modes are summarized as follows314

Mode I Normal state - Both individual and joint indices are 0 or extremely315

low.316

Mode II Sensor fault - Relatively high single individual index together with317

a relatively low joint index, and the faulty sensor is subject to the318

relatively high single index.319

Mode III Anomalous event - Multiple relatively high individual indices and320

relatively high joint index.321

The specific steps to determine the joint occurrence probability of322

anomalous behavior are listed as follows:323

I Suppose there are N pieces of independent evidence. In this paper,324

the framework of identification Γ is set as325

Γ = [γ1, γ2] (13)

where γ1 represents anomalous event, and γ2 stands for normal event.326
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14 Structural Health Monitoring XX(X)

II If Ak ⊆ Γ, and the function m(Ak) satisfies the conditions m(∅) = 0327

and
∑

jm(Ak) = 1, m is the basic probability assignment (BPA)328

function within Γ, andm(Ak) is termed as the BPA forAk, indicating329

the support degree of the evidence to the proposition Ak in the330

framework of identification. If m(Ak) > 0, then Ak is termed as a331

focal element. The union of all the focal elements of the evidence332

is termed as the nucleus G of the evidence and the evidence is333

expressed as (Γ,G,m). The BPA function is the certainty degree334

defined in equation (9). N pieces of evidence are expressed as335

E1 : [m1(A1),m1(A2),m1(Γ)]

E2 : [m2(A1),m2(A2),m2(Γ)]

...

EN : [mN(A1),mN(A2),mN(Γ)]

(14)

where m(A1) is the certainty degree subject to the proposition of336

anomalous event,m(A2) is that of the normal condition, and m(Γ) is337

the certain degree that both anomalous event and normal event could338

happen. In general, Ak is composed with one, multiple, or all γk.339

However, in this case, Ak = γk.340

III The similarity between two pieces of evidence is rated by using341

r(mi,mj) =

∑NA

k=1mi(Ak)mj(Ak)∑NA

k=1mi(Ak)2 +mj(Ak)2 −
∑NA

i=1mi(Ak)mj(Ak)
(15)

where NA is the number of focal elements. The similarity of342

the evidence is between 0 and 1. A larger value indicates higher343

similarity.344

IV Once obtaining the similarities between each two pieces of evidence,345

a N ×N dimensional similarity matrix R is built as346

R =


1 r(m1,m2) . . . r(m1,mN)

r(m2,m1) 1 . . . r(m2,mN)
...

... . . . ...
r(mN ,m1) r(mN ,m2) . . . 1

 (16)
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V The degree of support S(mi) on evidence i from all the other347

evidence is348

S(mi) =
N∑

j=1,j 6=i

r(mi,mj) (17)

The credibility of evidence is the normalized value of the support349

degree. The credibility of the evidence i, Ci, is described as350

Ci =
S(mi)

max[S(mi)]
(18)

VI Use the credibility Ci as the weight of evidence and correct the BPA351

function. Considering the condition of
∑

im(Ak) = 1, the updated352

BPA function should follow the critetion as50
353

m̂i(Ak) =

{
Cimi(Ak), Ak 6= Γ

Cimi(Ak) + (1− Ci), Ak = Γ
(19)

VII The relative credibility Di for evidence i is354

Di =
S(mi)∑N
i=1 S(mi)

(20)

The distribution weight of focal element A is50
355

δ(A, m̂) =
N∑
i=1

Dim̂i(A) (21)

VIII The final fusion results are derived by applying the combination356

operator as50
357

m(A) =

{
0, A = ∅∑
∩Ak=A

∏
1≤i≤N m̂i(Ak) +Kδ(A, m̂), A 6= ∅

(22)

in which K is the coefficient to evaluate the conflict of the modified358

evidence model, which is calculated by50
359

K =
∑
∩Ak=∅

∏
1≤i≤N

m̂i(Ak) (23)
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16 Structural Health Monitoring XX(X)

Figure 3. Site plan of the Nanjing Dashengguan Yangtze River Bridge.

Figure 4. Configuration and sensor layout of the Nanjing Dashengguan Yangtze River
Bridge.

Case study360

The Nanjing Dashengguan Yangtze River Bridge (NDB) and its SHM361

system362

The NDB, a vital transportation link, crosses the Yangtze River and363

connects Liuhe District with Nanjing City as shown in Figure 3. The steel364

cable-stayed bridge has a total length of 1288m, where the main span is365

648m. The configuration of the NDB is shown in Figure 4. The bridge366

deck is supported by a total of 168 stay cables, and each cable consists of367

109 to 241 wires of a 7mm diameter.368

A SHM system was devised and installed to monitor the environmental369

factors, external loads and structural responses in the second year after the370

completion of the bridge in 2005. A total of 599 sensors were employed,371

including anemometers, temperature sensors, anchor load cells, connected372

pipe system and others. Forces of all the 168 stay cables are recorded373

by using the JC1-type anchor load cells with a sampling frequency of374

10Hz and a relative measurement error of ±1%. The girder deflections375
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Table 1. Pairwise correlation coefficients for the four indices, i.e., forces of stay cable NJX21,
NJX20, NJX19 and mid-span deflection.

Correlation coefficient NJX21 NJX20 NJX19 Mid-span deflection

NJX21 1 0.9547 0.8292 0.8009
NJX20 0.9547 1 0.9541 0.8786
NJX19 0.8292 0.9541 1 0.8958

Mid-span deflection 0.8009 0.8786 0.8958 1

are measured using the Rosemount 3051S connected pipe system with an376

acquisition frequency of 10Hz and a resolution of ±1.5mm.377

The selected indices for multi-index anomaly detection not only are378

close in space but respond similarly to outer actions. The candidate379

indices, namely forces of stay cables NJX21, NJX20, NJX19 and mid-380

span deflection as highlighted in Figure 4, are selected in advance, whose381

measurement locations are relatively close, concentrating on the middle382

span area. Owing to the slight difference between their measurement383

locations, means in 20 seconds are used to calculate the correlation384

coefficients to depict the similarity of their responses. The correlation385

coefficients are calculated and listed in Table 1 using one hour data.386

The measurements from the selected four sensors are highly pair-wise387

correlated, where the highest correlation coefficient equals to 0.9547388

for NJX20 and NJX19, while the lowest one is 0.8009 for NJX21389

and mid-span deflection. In this paper, measurements of the stay cables390

NJX21, NJX20, NJX19 and mid-span deflections are adopted as anomaly391

detection indices for the following anomaly detection analysis.392

Data pre-processing393

Raw measurements from the studied four sensors in 10 seconds are plotted394

in Figure 5(a). The data missing phenomenon was observed in the cable395

force signals, while deflection signals have a relatively good continuity.396

The moving time window mean imputation is employed to address the397

data missing issue with a window length of 2 seconds. After missing data398

recovery, the signals achieve a good continuity as shown in Figure 5(b).399

Signals of the stay cable NJX21 in 24 hours, as shown in Figure 6(a),400

are taken as the example to explain the thermal separation procedure401

using the multi-resolution wavelet-based approach. The decomposition402

level is set as 27, and the wavelet basis function is ‘coif5’ in this study.403

The daily thermal effects were estimated to lie in the 19th detail level,404
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Figure 5. Missing data recovery process for the cable force and deflection data.

Figure 6. Thermal response separation process for the measurements from stay cable of
NJX21.

and the seasonal ones were located at the 27th approximation level. The405

extracted temperature-induced cable forces are plotted in Figure 6(a),406

whose variation trend is in line with that of the temperatures. Figure 6(b)407

is the cable force signals without the influence of thermal actions, which408

are qualified for the following discussions.409

Determination of probabilistic triggers410

Data preparation for GPD discussions The length of window is a critical411

parameter to extract energy indices, which will influence the effectiveness412

of anomaly detection. If the length is short, the tolerance of energy indices413

for spikes is insufficient, while if the length is large, the effectiveness of414

anomaly detection is weakened owing to the peak clipping of anomalous415
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Figure 7. Extracted energy indices in 24 hours for the studied four indices.

signals. In this paper, the length of time window is determined as 60s416

by taking overloading events into account. The specific descriptions of417

the determination of window length could refer to our previous paper27.418

Considering the GPD requires samples to be independent identically419

distributed, none overlap is employed herein.420

According to equation (1), the four energy indices along the timeline421

are extracted and plotted in Figure 7, where the length of time window422

is 60s and no overlap is applied. As requested by the GPD analysis in423

independent identically distribution, daily maxima, highlighted in Figure424

7, are adopted for the following detection trigger estimation. The extracted425

daily maximum indices in 2007 are plotted in Figure 8, which are the426

database for the GPD discussion. A total of 245 samples in 2007 rather427

than 365 result from the large portion of missing data, such as one week428

data missing owing to electricity interruption.429
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Figure 8. Daily maxima of the energy index for the four indices in 2007.

Threshold determination To predict triggers for anomaly detection, the430

threshold needs to be first determined based on the characteristics of431

the mean excess function and RMSE. Stay cable NJX21 is taken as the432

example to illustrate the procedure to determine thresholds. According to433

equations (5) and (6), the mean excess function and RMSE derived from434

the daily maximum indices in 2007 are plotted in Figure 9. A potential435

threshold of 32,441 subject to the lowest RMSE was observed, however,436

when the threshold is set as 32,441, only two samples are qualified for437

the GPD analysis which will result in a statistical uncertainty. To lower438

the uncertainty, a relatively small threshold of 13,976 is adopted, which439

also makes mean excess function linearly related with the threshold as440

shown in Figure 9. Furthermore, the corresponding RMSE approaches its441

local lowest point, which further supports its reasonability. Therefore, the442

optimal threshold regarding the stay cable NJX21 for the GPD discussions443

is set as 13,976.444
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Figure 9. Mean excess function and RMSE for the daily maxma of stay cable NJX21.

Similarly, the optimal thresholds of the other three indices (i.e., cable445

forces of NJX20, NJX19, and mid-span deflection) are determined as446

9,000, 7,000, and 420, respectively.447

Bayesian estimation The stay cable NJX21 is selected to depict the448

procedure of Bayesian estimation. The MG sampler is used to generate449

the posterior distribution of the parameters, where the initial values are450

set as θ(0) = (φ(0) = 6.30, σ(0) = 1, 000), the number of iteration N =451

40, 000, and the scale of the proposal distribution sφ = 0.001, sσ = 1. The452

calculation results during the iteration process are shown in Figure 10,453

where the burn-in and stationary periods are observed. The samples within454

the stationary period are used to figure out the posterior distributions455

of the parameters. As a result, the PDFs of the two parameters are456

shown in Figure 11, where scale parameter σ ∼ N(5, 965, 792) and shape457

parameter ξ ∼ N(−0.1079, 0.1032) .458

Upon obtaining the posterior distributions of the parameters, the PDF459

of the predicted trigger is achieved. 40,000 sets of possible triggers460

are generated based on random scale and shape parameters. Through461

statistics, the PDF of predicted triggers is plotted in Figure 12(a), where462

the estimated triggers for force of stay cable NJX21 satisfy a Lognormal463

distribution, i.e., Ta ∼ LogNormal(10.8822, 0.3423).464

Similarly, trigger distributions of the stay cables NJX20, NJX19 and465

mid-span deflection are obtained as shown in Figures 12(b), (c) and (d).466

Some critical parameters within the estimation course are listed in Table467

2.468
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Figure 10. Iteration process of the scale and shape parameters subject to the stay cable
NJX21.

Figure 11. Posterior distributions of the scale and shape parameters subject to the stay
cable NJX21.

Table 2. Critical parameters within the Bayesian estimation course for the studied indices.

Index Scale parameter Shape parameter Trigger

Stay cable NJX21 N(5,965, 792) N(-0.1079, 0.1032) LogNormal(10.882, 0.3423)
Stay cable NJX20 N(1,000, 52.5) N(-0.0827, 0.1011) LogNormal(9.6689, 0.1829)
Stay cable NJX19 N(585, 162) N(-0.0381, 0.1210) LogNormal(9.3675, 0.2382)

Mid-span deflection N(125.3,14.4) N(-0.014, 0.186) LogNormal(7.3789, 0.5595)

Sensor fault detection469

Owing to harsh environmental factors, sensor faults were observed470

gradually within the SHM system of the NDB. Through manual471

inspection, forces of stay cable NJX20 did not behave as expected and472

Prepared using sagej.cls



Xu, Forde et al. 23

Figure 12. Probability density function of the triggers for the four indices.

were confirmed as the failure of the anchor load cell on July 12, 2009. In473

detail, the measured cable force dropped from 3,600kN level to 2,500kN474

level as shown in Figure 13. In this regard, signals obtained from the475

studied four sensors on July 12, 2009 are employed for the sensor fault476

detection by using the proposed methodology.477

Following the pre-processing procedure, the energy indices are478

extracted and plotted in Figure 14 based on measurements from anchor479

load cells of stay cables NJX21, NJX20, NJX19, and mid-span deflection480

sensor. According to equation (9), certainty degrees of the studied four481

indices are calculated accordingly and demonstrated in Figure 14.482

As a result, only the index of stay cable NJX20 detects an anomalous483

scenario with almost 100% certainty degree, whilst the other three indices484

have certainty degrees of 0 which indicate the occurrence of anomaly485

events is almost impossible. Since the significant signal drop of the stay486

Prepared using sagej.cls



24 Structural Health Monitoring XX(X)

Figure 13. Forces of stay cable NJX20 on July 12, 2009 with faulty signals caused by sensor
faults.

Figure 14. Indices of the studied four sensors and their certainty degrees for sensor fault
detection.

cable NJX20 destroys the period law of thermal response, tremendous487

errors are generated by using the multi-resolution wavelet-based thermal488
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response separation method, resulting in extremely high values of the489

energy indices.490

Since the detection result of the stay cable NJX20 is against with the491

other three, evidential reasoning is used to form a joint one to achieve492

the final decision. The certainty degrees for anomaly detection subject to493

stay cables NJX21, NJX20, NJX19, and mid-span deflection are 0, 1, 0, 0,494

respectively.495

In evidential reasoning, the four studied indices are regarded as four496

pieces of evidence. Based on the certainty degrees shown in Figure 14, the497

specific four pieces of evidence are expressed as498

E1 : [m1(A1) = 0.00,m1(A2) = 1.00,m(Γ) = 0.00]

E2 : [m2(A1) = 1.00,m2(A2) = 0.00,m(Γ) = 0.00]

E3 : [m3(A1) = 0.00,m3(A2) = 1.00,m(Γ) = 0.00]

E4 : [m4(A1) = 0.00,m4(A2) = 1.00,m(Γ) = 0.00]

(24)

where A1 represents anomalous events, m(A1) is the occurrence certainty499

degree of anomalous events, and A2 stands for normal events, and m(A2)500

is the occurrence certainty degree of normal events.501

According to equation (15), similarities between each two pieces of502

evidence are calculated and used to construct the 4× 4 similarity matrix503

R, which is expressed as504

R =


1 0 1 1
0 1 0 0
1 0 1 1
1 0 1 1

 (25)

According to equations (17) and 18), the credibility of the four pieces505

of evidence is (1, 0, 1, 1). Then, the collected BPA function is acquired as506

E1 : [m̂1(A1) = 0.00, m̂1(A2) = 1.00, m̂(Γ) = 0.00]

E2 : [m̂2(A1) = 0.00, m̂2(A2) = 0.00, m̂(Γ) = 1.00]

E3 : [m̂3(A1) = 0.00, m̂3(A2) = 1.00, m̂(Γ) = 0.00]

E4 : [m̂4(A1) = 0.00, m̂4(A2) = 1.00, m̂(Γ) = 0.00]

(26)

According to equation (20), the relative credibility for the four507

pieces of evidence is (0.33, 0.00, 0.33, 0.33). Finally, according to508

equations (21), (22), and (23), the joint certainty degree subject to the509
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proposition of anomalous events derived from the four individual certainty510

degrees is estimated as m(A1) = 0. The anomaly detection result is511

listed as [m(A1) = 0;m1(A1) = 0,m2(A1) = 1,m3(A1) = 0,m4(A1) =512

0], which follows the mode II (i.e., sensor fault) that relatively high513

certainty degree of a single individual index and relatively low joint514

certainty degree. Based on this specific mode, it is concluded that the515

anomaly is triggered by sensor faults, and the faulty sensor is the one516

with high certainty degree of the individual index, i.e., anchor load cell517

installed at the stay cable NJX20. The anomaly detection result by using518

the proposed method is in line with the actual situation, which validates519

its effectiveness.520

Application in snow disaster detection521

Nanjing city underwent a heavy snowstorm at the end of January in 2008.522

To demonstrate the respond of the proposed anomaly detection method523

during such extreme weather, the measurements within the snowstorm524

time window (i.e., Jan. 26th, 2008) were discussed. The energy indices and525

certainty degrees of the four studied sensors were collected and plotted526

in Figure 15. The three cable force indices detect anomalous scenarios527

with the maximum certainty degrees of 0.17(NJX21), 0.94(NJX20), and528

0.94(NJX19), respectively. While the mid-span deflection index has a529

certainty degree of almost 0. It is observed that the four indices performed530

diversely in the snowstorm detection case. For instance, the indices of531

stay cables NJX20 and NJX19 achieve a high certainty degrees for the532

anomalous scenario, whilst the mid-span deflection index fails to detect533

the anomaly.534

The different performance of the four indices results from their own535

attributes in anomaly detection. In detail, different indices have various536

sensitivities to even the same anomalous event. In this case, the indices of537

stay cables NJX20 and NJX19 are the most sensitive index to the anomaly538

caused by snowstorm, while the index subject to the mid-span deflection539

is the least. If we only use a single index, such as the mid-span deflection,540

to detect anomalies in practice, the anomaly induced by snowstorm could541

not be detected in this case. Thus, it is essential to use multiple indices in542

anomaly detection to improve its efficiency.543

To distinguish sensor faults from anomalous events, evidential reasoning544

is applied to generate the joint certainty degree. The specific calculation545
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Figure 15. Indices of the studied four sensors and their certainty degrees in the snowstorm
detection case.

procedure of the joint certainty degree could refer to corresponding section546

in the sensor fault detection. As a result, the joint certainty degrees547

derived from the selected four indices are plotted in Figure 16. During548

the snow storm period (i.e., Jan. 26, 2008), anomalous scenarios are549

detected multiple times with various joint certainty degrees, where the550

maximum one is 36.82% at the 122, 8th minute instant. The detection551

mode of the snowstorm is finally listed as [m(A1) = 36.82%;m1(A1) =552

17%,m2(A1) = 94%,m3(A1) = 94%,m4(A1) = 0], which is in line with553

mode III (i.e., anomalous event) - there are multiple individual indices554

are triggered and the joint certainty degree is relatively high. Based on555

the defined modes, it is concluded that the anomaly was triggered by the556

snowstorm. Since a relatively high joint certainty degree of anomalous557

events is achieved in this case, it is suggested to pay more attention to the558

structural and operational conditions of the signature bridge.559
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Figure 16. Joint certainty degree for the snowstorm detection on Jan. 26, 2008.

Through in-depth analysis, the fact leading to the anomalous scenario is560

summarized as: (I) the bridge took extra snow loads with the accumulation561

of snow on the pavement; and (II) since the short-term bridge shutdown562

generated large number of awaiting vehicles, the traffic volume was563

extremely large when the bridge was re-opened. Considering the structural564

safety, the bridge was shut down for the whole day on Jan. 27, 2008.565

Discussion566

In this study, an energy index in time domain is developed for anomaly567

detection based on pre-processed SHM measurements, which performs568

more robust than the single signal index, especially for signal spikes. In569

the signal pre-processing stage, signals are filled by using moving time570

window mean imputation to achieve continuity and filtered through the571

multi-resolution wavelet-based approach to separate thermal response.572

The certainty degree, a probabilistic index for anomaly detection, is573

derived based on the PDF of detection triggers which is predicted by using574

Bayesian estimation of the GPD. In detail, MG sampler, one of MCMC575

algorithms, is adopted to obtain the posterior distributions of scale and576

shape parameters and triggers for anomaly detection.577

Evidential reasoning is employed to combine multiple certainty degrees578

into a joint one to distinguish sensor faults from anomalous scenarios.579

Specifically, three detection modes are defined to tell normal operation,580

sensor faults and anomalous events: (I)Mode I - Both individual and joint581

indices are 0 or extremely low; (II) Mode II - Relatively high single582
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individual index together with a relatively low joint index, and the faulty583

sensor is subject to the relatively high single index; and (III) Mode III -584

Multiple relatively high individual indices and relatively high joint index.585

The effectiveness of the multi-index probabilistic anomaly detection586

methodology is verified by using field measurements from the NDB.587

Sensor fault detection and snow disaster detection are presented in this588

study. The sensor fault is detected as mode II (i.e., sensor fault) - a nearly589

0 joint certainty degree and an almost 100% certainty degree of stay590

cable NJX20, which indicates the probability of the failure of the anchor591

load cell at the stay cable NJX20 is extremely high. Furthermore, the592

snow disaster is detected as mode III (anomalous event) - a 36.82% joint593

certainty degree. It is suggested to pay more attention to the structural and594

operational safety of the signature bridge.595

Conclusions596

In this paper, a multi-index probabilistic anomaly detection method597

is developed for large span bridges to rate the uncertainties within598

the detection course and distinguish sensor faults from anomalous599

scenarios. The Bayesian estimation of GPD is capable to model the600

uncertainties within the detection process, where a probabilistic index,601

i.e., certainty degree, is defined to describe the occurrence probability602

of anomalous events. In addition, evidential reasoning could distinguish603

sensor faults from anomalous scenarios by incorporating multiple604

probabilistic detection results into a joint one, where three modes are605

defined corresponding to normal operation, sensor fault and anomalous606

scenario, respectively.607

Since the proposed method is on the foundation of the assumption608

that anomalous scenarios will trigger multiple indices, it is challenge to609

distinguish sensor faults from localized damages. In addition, no such610

localized damages are observed in field, and the proposed model cannot611

simulate localized damages. It is suggested to establish localized damage612

models in the future or record actual monitored localized signals to carry613

out further studies. It is recommended to distinguish localized damages614

from sensor faults by different detection modes based on the particular615

obtained localized damage information.616

The proposed model could raise alerts when the structure facing sudden617

threats. However, the remaining life of the bridge cannot be estimated618
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by using the model. After alert, owners should organize inspection and619

assessment tasks to ensure the safety of the bridge. In the future, the620

method to predict remaining life of bridge should be studied based on621

inspection information.622
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