35 research outputs found

    X-raying the Beating Heart of a Newborn Star: Rotational Modulation of High-energy Radiation from V1647 Ori

    Get PDF
    We report a periodicity of ~1 day in the highly elevated X-ray emission from the protostar V1647 Ori during its two recent multiple-year outbursts of mass accretion. This periodicity is indicative of protostellar rotation at near-breakup speed. Modeling of the phased X-ray light curve indicates the high-temperature (~50 MK), X-ray-emitting plasma, which is most likely heated by accretion-induced magnetic reconnection, resides in dense (>~5e10 cm-3), pancake-shaped magnetic footprints where the accretion stream feeds the newborn star. The sustained X-ray periodicity of V1647 Ori demonstrates that such protostellar magnetospheric accretion configurations can be stable over timescales of years.Comment: 26 pages, 10 figure

    Laboratory Studies for Planetary Sciences. A Planetary Decadal Survey White Paper Prepared by the American Astronomical Society (AAS) Working Group on Laboratory Astrophysics (WGLA)

    Get PDF
    The WGLA of the AAS (http://www.aas.org/labastro/) promotes collaboration and exchange of knowledge between astronomy and planetary sciences and the laboratory sciences (physics, chemistry, and biology). Laboratory data needs of ongoing and next generation planetary science missions are carefully evaluated and recommended in this white paper submitted by the WGLA to Planetary Decadal Survey

    Neurobiology of Disease Hippocampal Hyperactivation Associated with Cortical Thinning in Alzheimer's Disease Signature Regions in Non-Demented Elderly Adults

    Get PDF
    Alzheimer's disease (AD) is associated with functional and structural alterations in a distributed network of brain regions supporting memory and other cognitive domains. Functional abnormalities are present in mild cognitive impairment (MCI) with evidence of early hyperactivity in medial temporal lobe regions, followed by failure of hippocampal activation as dementia develops. Atrophy in a consistent set of cortical regions, the "cortical signature of AD," has been reported at the stage of dementia, MCI, and even in clinically normal (CN) older individuals predicted to develop AD. Despite multiple lines of evidence for each of these findings, the relationship between this structural marker of AD-related neurodegeneration and this functional marker of the integrity of the episodic memory system has not yet been elucidated. We investigated this relationship in 34 nondemented older humans (CN, N Ï­ 18; MCI, N Ï­ 16). Consistent with previous studies, we found evidence of hippocampal hyperactivation in MCI compared with CN. Additionally, within this MCI group, increased hippocampal activation correlated with cortical thinning in AD-signature regions. Even within the CN group, increased hippocampal activity was negatively correlated with cortical thinning in a subset of regions, including the superior parietal lobule (r Ï­ ÏȘ0.66; p Ïœ 0.01). These findings, across a continuum of nondemented and mildly impaired older adults, support the hypothesis that paradoxically increased hippocampal activity may be an early indicator of AD-related neurodegeneration in a distributed network

    Creationism and Intelligent Design

    Get PDF
    Until recently, little attention has been paid in the school classroom to creationism and almost none to intelligent design. However, creationism and intelligent design appear to be on the increase and there are indications that there are more countries in which schools are becoming battlegrounds over them. I begin by examining whether creationism and intelligent design are controversial issues, drawing on Robert Dearden’s epistemic criterion of the controversial and more recent responses to and defences of this. I then examine whether the notion of ‘worldviews’ in the context of creationism is a useful one by considering the film March of the Penguins. I conclude that the ‘worldviews’ perspective on creationism is useful for two reasons: first, it indicates the difficulty of using the criterion of reason to decide whether an issue is controversial or not; secondly, it suggests that standard ways of addressing the diversity of student views in a science classroom may be inadequate. I close by examining the implications of this view for teaching in science lessons and elsewhere, for example in religious education lessons and at primary level where subject divisions cannot be made in so clear-cut a manner

    Naming impairment in Alzheimer's disease is associated with left anterior temporal lobe atrophy

    No full text
    There is considerable debate about the neuroanatomic localization of semantic memory, the knowledge of culturally shared elements such as objects, concepts, and people. Two recent meta-analyses of functional imaging studies (fMRI and PET) sought to identify cortical regions involved in semantic processing. Binder and colleagues (Binder et al., 2009) identified several regions of interest, widely distributed throughout the frontal, parietal, and temporal cortices. In contrast, Lambon Ralph and colleagues (2010) focused on the anterior temporal lobe, and found that when the potential for signal loss is accounted for (due, for example, to distortion artifact or field of view restriction), significant regional activation is detected. We set out to determine whether the anterior temporal lobe plays a significant role in picture naming, a task which relies on semantic memory. We examined a relatively large sample of patients with early Alzheimer’s disease (N=145), a multifocal disease process typically characterized in the early stages by problems with episodic memory and executive function. Hypothesis-driven analyses based on regions of interest derived from the meta-analyses as well as exploratory analyses across the entire cerebral cortex demonstrated a highly specific correlation between cortical thinning of the left anterior temporal lobe and impaired naming performance. These findings lend further support to theories that include a prominent role for the anterior temporal lobe in tasks that rely on semantic memory

    Data from: Quantification of motor speech impairment and its anatomic basis in primary progressive aphasia

    No full text
    Objective: To evaluate whether a quantitative speech measure is effective in identifying and monitoring motor speech impairment (MSI) in patients with primary progressive aphasia (PPA), and to investigate the neuroanatomical basis of MSI in PPA. Methods: Sixty-four patients with PPA were evaluated at baseline, with a subset (N=39) evaluated longitudinally. Articulation rate (AR), a quantitative measure derived from spontaneous speech, was measured at each timepoint. MRI was collected at baseline. Differences in baseline AR were assessed across PPA subtypes, separated by severity level. Linear mixed-effects models were conducted to assess groups differences across PPA subtypes in rate of decline in AR over a one-year period. Cortical thickness measured from baseline MRIs was used to test hypotheses about the relationship between cortical atrophy and MSI. Results: Baseline AR was reduced for patients with non-fluent variant PPA (nfvPPA), as compared to other PPA subtypes and controls, even in mild stages of disease. Longitudinal results showed a greater rate of decline in AR for the nfvPPA group over one year, as compared to logopenic and semantic variant subgroups. Reduced baseline AR was associated with cortical atrophy in left-hemisphere premotor and supplementary motor cortices. Conclusions: The AR measure is an effective quantitative index of MSI that detects MSI in mild disease stages and tracks decline in MSI longitudinally. The AR measure additionally demonstrates anatomic localization to motor-speech specific cortical regions. Our findings suggest that this quantitative measure of MSI might have utility in diagnostic evaluation and monitoring of motor speech impairments in PPA
    corecore