161 research outputs found

    Single Exhaled Breath Metabolomic Analysis Identifies Unique Breathprint in Patients With Acute Decompensated Heart Failure

    Get PDF
    Acute decompensated heart failure (ADHF) is the most common indication for hospital admission, particularly in the elderly, yet the identification of those with impending decompensation using conventional clinical methods is unreliable and frequently leaves insufficient lag time for therapeutic interventions (1). Exhaled breath constitutes a complex mixture of hundreds of volatile organic compounds (VOCs) that could potentially be used as a safe and noninvasive method of diagnostic and therapeutic monitoring (2). Previous research studies have identified elevated acetone, pentane, and nitric oxide levels in exhaled breath in the setting of HF correlated with disease severity (3–5). Selected ion-flow tube mass-spectrometry (SIFT-MS) combines a fast flow tube technique with quantitative mass spectrometry that is ideally suited for exhaled breath analysis because it allows for the analysis of small and humid samples without the need for cumbersome sample preparation or calibration (6). Scan times are relatively brief, thus facilitating high throughput and serial comparisons. Using this technology, we conducted a prospective, single-center cohort study to assess the feasibility of exhaled breath analysis to identify patients admitted for ADHF. The study protocol was approved by the Cleveland Clinic Institutional Review Board. We recruited 25 consecutive patients admitted with ADHF as their primary diagnosis (mean left ventricular ejection fraction 27 ± 13%, median N-terminal pro–B-type natriuretic peptide level 954 pg/ml) and a control group of 16 subjects admitted with non-ADHF cardiovascular diagnoses and who had no clinical evidence of systemic or venous congestion at the time of enrollment. Indications for hospitalization in the control group included unstable angina or non–ST-segment elevation myocardial infarction (6 of 16), conduction disorders (3 of 16), hypertensive emergency (3 of 16), atrial tachyarrhythmia (2 of 16), or stable angina (2 of 16). All analyses were performed using JMP Pro 9.0 (SAS Institute, Cary, North Carolina). As expected, there were significant (p \u3c 0.01) baseline differences in the frequency of hypertension (54% vs. 100%) and baseline estimated glomerular filtration rate (68 ± 43 ml/min/1.73 m2 vs. 102 ± 44 ml/min/1.73 m2), which were significantly worse in the ADHF versus control group. Nevertheless, there were no significant differences between groups in age, body mass index, or several comorbidities (i.e., diabetes mellitus, chronic obstructive pulmonary disease, active smoking) theorized to result in alterations in the exhaled metabolome

    Elevated Soluble Fms-Like Tyrosine Kinase-1 and Placental-Like Growth Factor Levels Are Associated With Development and Mortality Risk in Heart Failure

    Get PDF
    Background—Vascular endothelial dysfunction may play an important role in the progression of heart failure (HF). We hypothesize that elevated levels of vascular markers, placental-like growth factor, and soluble Fms-like tyrosine kinase-1 (sFlt-1) are associated with adverse outcomes in patients with HF. We also assessed possible triggers of sFlt-1 elevation in animal HF models. Methods and Results—We measured plasma placental-like growth factor and sFlt-1 in 791 HF patients undergoing elective coronary angiogram. Median (interquartile range) placental-like growth factor and sFlt-1 levels were 24 (20–29) and 382 (277–953) pg/mL, respectively. After 5 years of follow-up, and after using receiver operator characteristic curves to determine optimal cutoffs, high levels of sFlt-1 (≥280 pg/mL; adjusted hazard ratio, 1.47; 95% confidence interval, 1.03–2.09; P=0.035) but not placental-like growth factor (≥25 pg/mL; adjusted hazard ratio, 1.26; 95% confidence interval, 0.94–1.71, P=0.12) were associated with adverse cardiovascular outcomes. In addition, significant elevation of sFlt-1 levels was observed in left anterior descending artery ligation and transverse aortic constriction HF mouse models after 4 and 8 weeks of follow-up, suggesting vascular stress and ischemia as triggers for sFlt-1 elevation in HF. Conclusions—Circulating sFlt-1 is generated as a result of myocardial injury and subsequent HF development. Elevated levels of sFlt-1 are associated with adverse outcomes in stable patients with HF

    Effect of a pediatric early warning system on all-cause mortality in Hospitalized pediatric patients: The epoch randomized clinical trial

    Get PDF
    IMPORTANCE: There is limited evidence that the use of severity of illness scores in pediatric patients can facilitate timely admission to the intensive care unit or improve patient outcomes. OBJECTIVE: To determine the effect of the Bedside Paediatric Early Warning System (BedsidePEWS) on all-cause hospital mortality and late admission to the intensive care unit (ICU), cardiac arrest, and ICU resource use. DESIGN, SETTING, AND PARTICIPANTS: A multicenter cluster randomized trial of 21 hospitals located in 7 countries (Belgium, Canada, England, Ireland, Italy, New Zealand, and the Netherlands) that provided inpatient pediatric care for infants (gestational age ≥37 weeks) to teenagers (aged ≤18 years). Participating hospitals had continuous physician staffing and subspecialized pediatric services. Patient enrollment began on February 28, 2011, and ended on June 21, 2015. Follow-up ended on July 19, 2015. INTERVENTIONS: The BedsidePEWS intervention (10 hospitals) was compared with usual care (no severity of illness score; 11 hospitals). MAIN OUTCOMES AND MEASURES: The primary outcome was all-cause hospital mortality. The secondary outcome was a significant clinical deterioration event, which was defined as a composite outcome reflecting late ICU admission. Regression analyses accounted for hospital-level clustering and baseline rates. RESULTS: Among 144539 patient discharges at 21 randomized hospitals, there were 559 443 patient-days and 144539 patients (100%) completed the trial. All-cause hospital mortality was 1.93 per 1000 patient discharges at hospitals with BedsidePEWS and 1.56 per 1000 patient discharges at hospitals with usual care (adjusted between-group rate difference, 0.01 [95% CI, -0.80 to 0.81 per 1000 patient discharges]; adjusted odds ratio, 1.01 [95% CI, 0.61 to 1.69]; P =.96). Significant clinical deterioration events occurred during 0.50 per 1000 patient-days at hospitals with BedsidePEWS vs 0.84 per 1000 patient-days at hospitals with usual care (adjusted between-group rate difference, -0.34 [95% CI, -0.73 to 0.05 per 1000 patient-days]; adjusted rate ratio, 0.77 [95% CI, 0.61 to 0.97]; P =.03). CONCLUSIONS AND RELEVANCE: Implementation of the Bedside Paediatric Early Warning System compared with usual care did not significantly decrease all-cause mortality among hospitalized pediatric patients. These findings do not support the use of this system to reduce mortality

    Canadian Guidelines for Controlled Pediatric Donation After Circulatory Determination of Death-Summary Report

    Get PDF
    OBJECTIVES: Create trustworthy, rigorous, national clinical practice guidelines for the practice of pediatric donation after circulatory determination of death in Canada. METHODS: We followed a process of clinical practice guideline development based on World Health Organization and Canadian Medical Association methods. This included application of Grading of Recommendations Assessment, Development, and Evaluation methodology. Questions requiring recommendations were generated based on 1) 2006 Canadian donation after circulatory determination of death guidelines (not pediatric specific), 2) a multidisciplinary symposium of national and international pediatric donation after circulatory determination of death leaders, and 3) a scoping review of the pediatric donation after circulatory determination of death literature. Input from these sources drove drafting of actionable questions and Good Practice Statements, as defined by the Grading of Recommendations Assessment, Development, and Evaluation group. We performed additional literature reviews for all actionable questions. Evidence was assessed for quality using Grading of Recommendations Assessment, Development, and Evaluation and then formulated into evidence profiles that informed recommendations through the evidence-to-decision framework. Recommendations were revised through consensus among members of seven topic-specific working groups and finalized during meetings of working group leads and the planning committee. External review was provided by pediatric, critical care, and critical care nursing professional societies and patient partners. RESULTS: We generated 63 Good Practice Statements and seven Grading of Recommendations Assessment, Development, and Evaluation recommendations covering 1) ethics, consent, and withdrawal of life-sustaining therapy, 2) eligibility, 3) withdrawal of life-sustaining therapy practices, 4) ante and postmortem interventions, 5) death determination, 6) neonatal pediatric donation after circulatory determination of death, 7) cardiac and innovative pediatric donation after circulatory determination of death, and 8) implementation. For brevity, 48 Good Practice Statement and truncated justification are included in this summary report. The remaining recommendations, detailed methodology, full Grading of Recommendations Assessment, Development, and Evaluation tables, and expanded justifications are available in the full text report. CONCLUSIONS: This process showed that rigorous, transparent clinical practice guideline development is possible in the domain of pediatric deceased donation. Application of these recommendations will increase access to pediatric donation after circulatory determination of death across Canada and may serve as a model for future clinical practice guideline development in deceased donation

    An analysis-ready and quality controlled resource for pediatric brain white-matter research

    Get PDF
    We created a set of resources to enable research based on openly-available diffusion MRI (dMRI) data from the Healthy Brain Network (HBN) study. First, we curated the HBN dMRI data (N = 2747) into the Brain Imaging Data Structure and preprocessed it according to best-practices, including denoising and correcting for motion effects, susceptibility-related distortions, and eddy currents. Preprocessed, analysis-ready data was made openly available. Data quality plays a key role in the analysis of dMRI. To optimize QC and scale it to this large dataset, we trained a neural network through the combination of a small data subset scored by experts and a larger set scored by community scientists. The network performs QC highly concordant with that of experts on a held out set (ROC-AUC = 0.947). A further analysis of the neural network demonstrates that it relies on image features with relevance to QC. Altogether, this work both delivers resources to advance transdiagnostic research in brain connectivity and pediatric mental health, and establishes a novel paradigm for automated QC of large datasets

    The Mid-infrared Instrument for JWST and Its In-flight Performance

    Get PDF
    The Mid-Infrared Instrument (MIRI) extends the reach of the James Webb Space Telescope (JWST) to 28.5 μm. It provides subarcsecond-resolution imaging, high sensitivity coronagraphy, and spectroscopy at resolutions of λ/Δλ ∼ 100-3500, with the high-resolution mode employing an integral field unit to provide spatial data cubes. The resulting broad suite of capabilities will enable huge advances in studies over this wavelength range. This overview describes the history of acquiring this capability for JWST. It discusses the basic attributes of the instrument optics, the detector arrays, and the cryocooler that keeps everything at approximately 7 K. It gives a short description of the data pipeline and of the instrument performance demonstrated during JWST commissioning. The bottom line is that the telescope and MIRI are both operating to the standards set by pre-launch predictions, and all of the MIRI capabilities are operating at, or even a bit better than, the level that had been expected. The paper is also designed to act as a roadmap to more detailed papers on different aspects of MIRI

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic
    corecore