113 research outputs found

    Sebomic identification of sex- and ethnicity-specific variations in residual skin surface components (RSSC) for bio-monitoring or forensic applications

    Get PDF
    Background: “Residual skin surface components” (RSSC) is the collective term used for the superficial layer of sebum, residue of sweat, small quantities of intercellular lipids and components of natural moisturising factor present on the skin surface. Potential applications of RSSC include use as a sampling matrix for identifying biomarkers of disease, environmental exposure monitoring, and forensics (retrospective identification of exposure to toxic chemicals). However, it is essential to first define the composition of “normal” RSSC. Therefore, the aim of the current study was to characterise RSSC to determine commonalities and differences in RSSC composition in relation to sex and ethnicity. Methods: Samples of RSSC were acquired from volunteers using a previously validated method and analysed by high-pressure liquid chromatography–atmospheric pressure chemical ionisation–mass spectrometry (HPLC-APCI-MS). The resulting data underwent sebomic analysis. Results: The composition and abundance of RSSC components varied according to sex and ethnicity. The normalised abundance of free fatty acids, wax esters, diglycerides and triglycerides was significantly higher in males than females. Ethnicity-specific differences were observed in free fatty acids and a diglyceride. Conclusions: The HPLC-APCI-MS method developed in this study was successfully used to analyse the normal composition of RSSC. Compositional differences in the RSSC can be attributed to sex and ethnicity and may reflect underlying factors such as diet, hormonal levels and enzyme expression.Peer reviewedFinal Published versio

    Analyses of cerebral microdialysis in patients with traumatic brain injury: relations to intracranial pressure, cerebral perfusion pressure and catheter placement

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cerebral microdialysis (MD) is used to monitor local brain chemistry of patients with traumatic brain injury (TBI). Despite an extensive literature on cerebral MD in the clinical setting, it remains unclear how individual levels of real-time MD data are to be interpreted. Intracranial pressure (ICP) and cerebral perfusion pressure (CPP) are important continuous brain monitors in neurointensive care. They are used as surrogate monitors of cerebral blood flow and have an established relation to outcome. The purpose of this study was to investigate the relations between MD parameters and ICP and/or CPP in patients with TBI.</p> <p>Methods</p> <p>Cerebral MD, ICP and CPP were monitored in 90 patients with TBI. Data were extensively analyzed, using over 7,350 samples of complete (hourly) MD data sets (glucose, lactate, pyruvate and glycerol) to seek representations of ICP, CPP and MD that were best correlated. MD catheter positions were located on computed tomography scans as pericontusional or nonpericontusional. MD markers were analyzed for correlations to ICP and CPP using time series regression analysis, mixed effects models and nonlinear (artificial neural networks) computer-based pattern recognition methods.</p> <p>Results</p> <p>Despite much data indicating highly perturbed metabolism, MD shows weak correlations to ICP and CPP. In contrast, the autocorrelation of MD is high for all markers, even at up to 30 future hours. Consequently, subject identity alone explains 52% to 75% of MD marker variance. This indicates that the dominant metabolic processes monitored with MD are long-term, spanning days or longer. In comparison, short-term (differenced or Δ) changes of MD vs. CPP are significantly correlated in pericontusional locations, but with less than 1% explained variance. Moreover, CPP and ICP were significantly related to outcome based on Glasgow Outcome Scale scores, while no significant relations were found between outcome and MD.</p> <p>Conclusions</p> <p>The multitude of highly perturbed local chemistry seen with MD in patients with TBI predominately represents long-term metabolic patterns and is weakly correlated to ICP and CPP. This suggests that disturbances other than pressure and/or flow have a dominant influence on MD levels in patients with TBI.</p

    Neurobiology of rodent self-grooming and its value for translational neuroscience

    Get PDF
    Self-grooming is a complex innate behaviour with an evolutionarily conserved sequencing pattern and is one of the most frequently performed behavioural activities in rodents. In this Review, we discuss the neurobiology of rodent self-grooming, and we highlight studies of rodent models of neuropsychiatric disorders-including models of autism spectrum disorder and obsessive compulsive disorder-that have assessed self-grooming phenotypes. We suggest that rodent self-grooming may be a useful measure of repetitive behaviour in such models, and therefore of value to translational psychiatry. Assessment of rodent self-grooming may also be useful for understanding the neural circuits that are involved in complex sequential patterns of action.National Institutes of Health (U.S.) (Grant NS025529)National Institutes of Health (U.S.) (Grant HD028341)National Institutes of Health (U.S.) (Grant MH060379

    The VHL-dependent regulation of microRNAs in renal cancer

    Get PDF
    Extent: 17p.Background The commonest histological type of renal cancer, clear cell renal cell carcinoma (cc RCC), is associated with genetic and epigenetic changes in the von Hippel-Lindau (VHL) tumour suppressor. VHL inactivation leads to induction of hypoxia-inducible factors (HIFs) and a hypoxic pattern of gene expression. Differential levels of specific microRNAs (miRNAs) are observed in several tumours when compared to normal tissue. Given the central role of VHL in renal cancer formation, we examined the VHL-dependent regulation of miRNAs in renal cancer. Methods VHL-dependent miRNA expression in cc RCC was determined by microarray analysis of renal cell line RCC4 with mutated VHL (RCC4-VHL) and reintroduced wild-type VHL (RCC4 + VHL). Five miRNAs highly upregulated in RCC4 + VHL and five miRNAs highly downregulated in RCC4 + VHL were studied further, in addition to miR-210, which is regulated by the HIF-VHL system. miRNA expression was also measured in 31 cc RCC tumours compared to adjacent normal tissue. Results A significant increase in miR-210, miR-155 and miR-21 expression was observed in the tumour tissue. miR-210 levels also showed a correlation with a HIF-regulated mRNA, carbonic anhydrase IX (CAIX), and with VHL mutation or promoter methylation. An inverse correlation was observed between miR-210 expression and patient survival, and a putative target of miR-210, iron-sulfur cluster assembly protein (ISCU1/2), shows reciprocal levels of mRNA expression in the tumours. Conclusions We have identified VHL-regulated miRNAs and found that for some the regulation is HIF-dependent and for others it is HIF-independent. This pattern of regulation was also seen in renal cancer tissue for several of these miRNAs (miR-210, miR-155, let-7i and members of the miR-17-92 cluster) when compared with normal tissue. miR-210 showed marked increases in expression in renal cancer and levels correlated with patient survival. The inverse correlation between miR-210 levels and ISCU1/2 provides support for the hypothesis that ISCU1/2 is a target of miR-210 and that it may contribute to the anaerobic respiration seen in renal (and other) tumours.Calida S Neal, Michael Z Michael, Lesley H Rawlings, Mark B Van der Hoek and Jonathan M Gleadl

    An evolving research agenda for human–coastal systems

    Full text link

    Conservation status of the American horseshoe crab, (Limulus polyphemus): a regional assessment

    Get PDF

    Hemispheric differences in motor cortex excitability during a simple index finger abduction task in humans

    No full text
    Hemispheric differences in motor cortex excitability during a simple index finger abduction task in humans. J. Neurophysiol. 79: 1246–1254, 1998.Transcranial magnetic (TMS) and electrical (TES) stimulation was used to assess the contribution of the corticospinal pathway to activation of the first dorsal interosseous muscle (FDI) in each hand of 16 right-handed subjects. TMS was applied at relaxed threshold intensity while the subject performed isometric index finger abduction at seven force levels [0.5 N to 50% maximal voluntary contraction (MVC)]. In a separate session, TES of equivalent intensity was applied to each hemisphere in 5 of these subjects while they performed the same force-matching protocol. In the resting state, mean threshold intensity for a muscle-evoked potential (MEP) in FDI using TMS was similar for the hemispheres controlling the dominant and nondominant hands. The size of the threshold MEPs in resting FDI after TMS and TES were also similar in each hand. With TMS, contraction-induced facilitation of the MEP in FDI was significantly larger when the nondominant hand was used for index finger abduction. In the pooled data, the nondominant/dominant ratio of MEP areas (normalized to the maximum M wave) ranged from 1.7 in the weakest contraction (0.5 N) to 1.1 in the strongest (50% MVC). Eight subjects had significant differences between hands in favour of the nondominant hand, whereas in two subjects contraction-induced facilitation of MEPs was larger in the dominant hand. In five subjects for whom detailed motor unit data were available from a previous study, lateral differences in MEP facilitation were positively correlated with differences in FDI motor unit synchronization between hands. With TES, contraction-induced facilitation of the MEP was similar in each hand, suggesting that spinal excitability was equivalent on both sides. For the group of five subjects tested with both stimulation techniques, contraction-induced facilitation of the MEP was significantly larger after TMS than that obtained with TES when the contraction was performed with the nondominant hand, but not when the dominant hand was used to perform the task. We conclude that the extent of corticospinal neuron involvement in the command for simple index finger abduction in right-handed subjects is generally greater when the nondominant hand is used, compared with the same task performed with the dominant hand.John G. Semmler and Michael A. Nordstro

    Different stimulation frequencies alter synchronous fluctuations in motor evoked potential amplitude of intrinsic hand muscles- a TMS study

    Get PDF
    The amplitude of motor-evoked potentials (MEPs) elicited with transcranial magnetic stimulation (TMS) varies from trial-to-trial. Synchronous oscillations in cortical neuronal excitability contribute to this variability, however it is not known how different frequencies of stimulation influence MEP variability, and whether these oscillations are rhythmic or aperiodic. We stimulated the motor cortex with TMS at different regular (i.e., rhythmic) rates, and compared this with pseudo-random (aperiodic) timing. In 18 subjects, TMS was applied at three regular frequencies (0.05 Hz, 0.2 Hz, 1 Hz) and one aperiodic frequency (mean 0.2 Hz). MEPs (n = 50) were recorded from three intrinsic hand muscles of the left hand with different functional and anatomical relations. MEP amplitude correlation was highest for the functionally related muscle pair, less for the anatomically related muscle pair and least for the functionally- and anatomically-unrelated muscle pair. MEP correlations were greatest with 1 Hz, and least for stimulation at 0.05 Hz. Corticospinal neuron synchrony is higher with shorter TMS intervals. Further, corticospinal neuron synchrony is similar irrespective of whether the stimulation is periodic or aperiodic. These findings suggest TMS frequency is a crucial consideration for studies using TMS to probe correlated activity between muscle pairs

    Differential Modulation of Intracortical Inhibition in Human Motor Cortex during Selective Activation of an Intrinsic Hand Muscle

    No full text
    Paired-pulse transcranial magnetic stimulation (TMS) was used to assess the effectiveness of intracortical inhibition (ICI) acting on corticospinal neurons controlling three intrinsic hand muscles in humans. We hypothesised that the suppression of ICI with selective activation of a muscle would be restricted to corticospinal neurons controlling the muscle targeted for activation. Surface EMG was recorded from abductor pollicis brevis (APB), first dorsal interosseous (FDI) and abductor digiti minimi (ADM) muscles of the left hand. Subjects were tested at rest and during weak selective activation of APB or ADM, while they attempted to keep the other muscles relaxed using visual feedback. Paired-pulse TMS was applied with a circular coil oriented to produce antero-posterior (AP) current flow in the right motor cortex (to preferentially evoke I3 waves in corticospinal neurons) and with postero-anterior (PA) currents (to preferentially evoke I1 waves). Paired-pulse TMS was less effective in suppressing the muscle evoked potential (MEP) when the muscle was targeted for selective activation, with both AP and PA stimulation. The mechanism for this includes effects on late I waves, as it was evident with a weak AP test TMS pulse that elicited negligible I1 waves in corticospinal neurons. ICI circuits activated by TMS, which exert their effects on late I waves but do not affect I1 waves, are strongly implicated in this modulation. With AP stimulation, paired-pulse inhibition was not significantly altered for corticospinal neurons controlling other muscles of the same hand which were required to be inactive during the selective activation task. This differential modulation was not seen with PA stimulation, which preferentially activates I1 waves and evokes a MEP that is less influenced by ICI. The observations with AP stimulation suggest that selective activation of a hand muscle is accompanied by a selective suppression of ICI effects on the corticospinal neurons controlling that muscle. The pattern of differential modulation of ICI effectiveness with voluntary activation suggests that the ICI circuits assist the corticospinal system in producing fractionated activity of intrinsic hand muscles
    corecore