220 research outputs found

    1-(3-Bromo­prop­yl)-4-(2-pyrid­yl)-1H-1,2,3-triazole

    Get PDF
    In the structure of the title compound, C10H11BrN4, the plane of the substituted 1,2,3-triazole ring is tilted by 14.84 (10)° with respect to the mean plane of the pyridine ring. The pyridine and closest triazole N atoms adopt an anti arrangement which removes any lone pair–lone pair repulsions between the N atoms. This conformation is further stabilized by weak intermolecular C—H⋯N inter­actions. There are two mol­ecules in the unit cell, which form a centrosymmetric head-to-tail dimer. The dimers are stabilized through π–π inter­actions [centroid–centroid distance = 3.733 (4) Å and mean inter­planar distance = 3.806 (12) Å] between the substituted 1,2,3-triazole ring and the pyridine rings in adjacent mol­ecules. Each dimer inter­acts with two neighbouring dimers above and below, forming a slipped stack of dimers through the crystal. The 3-bromo­propyl chain sits over the pyridine ring of a neighbouring mol­ecule and the triazole rings of nearby mol­ecules are adjacent

    Toward large tubular helices based on the polymerization of tri(benzamide)s

    Get PDF
    Herein we present the synthesis and polycondensation of mono- and di-N-protected, bis-substituted tri(benzamide)s with the aim to create large, tubular helices. We synthesized 2,4-dimethoxy and 2,5-bis-TEGylated aminobenzoic acid derivatives as bent and linear monomers and introduced p-methoxybenzyl (PMB) amide protecting groups to the oligobenzamide backbone. An iterative coupling strategy allowed for sequence control, giving rise to oligomers consisting of one bent and two linear monomers. The resulting meta-para-para-linked aromatic trimers carried either one or two PMB-protecting groups. With high organosolubility and flexibility, this synthetic strategy generated suitable precursors for subsequent polycondensation reactions. After polymerization, treatment with acid triggered the cleavage of the N-protecting groups. We hypothesize that the hydrogen bonding pattern generated along the polyaramide backbone could lead to the formation of a helical polymer. A drastic change in hydrodynamic volume was observed by gel permeation chromatography and dissolution in a chiral solvent lead to the observation of a circular dichroism signal for this polymer. The results of the polycondensations of N-protected oligobenzamides are reported herein. The formation of macrocycles as well as polymers could also be observed, giving a highly interesting insight into the underlying mechanism of the polycondensation of flexible, oligobenzamide-based oligomer

    Neuartige Triazol-basierte aromatische RĂŒckgrate fĂŒr die Makromolekulare und Supramolekulare Chemie

    Get PDF
    Ein Ansatz der Darstellung von neuartigen funktionalen Materialien basiert auf der Synthese von Foldameren mit charakteristischen Eigenschaften, die eine Kontrolle ĂŒber Formgebung und Gestaltung der MakromolekĂŒle und derer Aggregate zulassen. Bislang sind gerade grĂ¶ĂŸere Foldamerstrukturen definierter GrĂ¶ĂŸe und Form meist schwer darstellbar und eine strukturelle Modifizierbarkeit nicht ohne weiteres möglich. In dieser Arbeit konnte gezeigt werden, dass die hohe Effizienz der seit 2002 bekannten Kupfer(I)-katalysierten 1,3-dipolaren Azid-Alkin-Cycloaddition, kurz “Klick“-Reaktion genannt, verwendet werden kann, um neuartige heteroaromatische GerĂŒste fĂŒr die Konstruktion von diversen (makromolekularen) Strukturen zu generieren. Hierbei wird der bei der Reaktion entstehende Triazol-Ring gezielt als funktionale und strukturgebende Einheit genutzt. ZunĂ€chst wurden auf einfache und hochmodulare Weise 2,6-Bis(1-aryl-1,2,3-triazol-4-yl)pyridine (BTPs) dargestellt, die in einer hufeisenförmigen, planaren Konformation vorliegen und sich daher als helikogene Einheiten fĂŒr die Konstruktion von helikalen aromatischen Foldameren eignen. Zudem stellen die BTP-Strukturen eine neue Klasse von pyridinzentrierten, tridentaten Liganden dar. Sie koordinieren an eine Vielzahl von Übergangsmetallionen unter Ausbildung von Metallkomplexen, die ĂŒber interessante magnetische und lumineszierende Eigenschaften verfĂŒgen. Durch die Koordination, aber auch bei Protonierung, lassen sich die BTP-GerĂŒste von der gebeugten anti-anti-Konformation in eine gestreckte syn-syn-Konformation schalten. Dies wurde in Lösung, im kristallinen Festkörper und an der FlĂŒssig-Fest-GrenzflĂ€che zu Graphit untersucht. Über Selbstorganisation großflĂ€chig ausgebildete hochgeordnete BTP-Monoschichten an der GraphitoberflĂ€che lassen sich mit Hilfe der Rastertunnel-Mikroskopie visualisieren und durch oben genannte externe Stimuli umstrukturieren. Eine neue Klasse von (BTP-basierten) responsiven heteroaromatischen oligomeren und polymeren Foldameren wurde mit Hilfe der „Klick“-Reaktion generiert. Die Oligomeren, sogenannte ”Klickamere“, mit einer LĂ€nge von 17 aromatischen Ringen zeigen in polaren Lösungsmitteln ein ausgeprĂ€gtes helikales Faltungsverhalten. Ein aus 17 aromatischen Ringen bestehender Foldamerstrang ist gegenĂŒber Chloridionen responsiv, wobei es durch die Wechselwirkung mit diesem achiralen Stimulus bemerkenswerter Weise zu einer Helixinversion kommt. Die entsprechenden responsiven Polymere falten in eine stabile helikale Konformation, die bei Zugabe von Metallionen aufbricht und zu der Bildung von koordinativ kreuzverlinkten, stark viskosen Gelen fĂŒhrt.One approach to develop novel functional materials is based on the synthesis of macromolecules with characteristic properties, in particular foldamers. However, preparation and structural variation of macromolecules of controllable size and specific shape are often cumbersome and versatile synthetic routes are still needed. In this dissertation, the high efficiency of the so called “click”-reaction, i.e. the Cu(I)-catalyzed Huisgen-type 1,3-dipolar cycloaddition, has been used to design a novel class of heteroaromatic (macromolecular) scaffolds. In these structures the formed triazole moieties constitute an essential integral part rather than a mere connecting unit. In a first step, structurally varying 2,6-Bis(1-aryl-1,2,3-triazolyl-4-yl)pyridines (BTPs) have been generated in an easy and modular way. The BTP scaffold adopts a kinked conformation and therefore functions as helicogenic building block for the construction of helical foldamers. Additionally, the BTP framework is responsive towards protonation and transition metal ion complexation, thereby undergoing a significant structural change from the kinked anti-anti into the extended syn-syn conformation. The conformational switching has been investigated in solution and in the solid state but can also be visualized at the liquid-solid interface on graphite by STM imaging. The BTPs represent a novel class of pyridine-centered, tridentate ligands, which form complexes with interesting magnetic and luminescent properties by the coordination to numerous transition metal ions. Varying heteroaromatic oligomeric and polymeric foldamers with remarkable properties have been generated using the “click”-reaction as synthesis tool. The BTP building blocks, which have (partly) been integrated into the backbones, support the stability of the helical conformation and provide responsiveness towards external stimuli. Three oligomer series of different length have been synthesized and analyzed. Oligomers consisting of 17 aromatic rings, termed clickamers, fold into a helical conformation in polar solvents. One of the three clickamers shows an unexpected phenomenon of helix inversion upon interaction with chloride ions as an achiral stimulus. The corresponding polymeric strands fold into an even more stable helical conformation, which breaks up upon exposure to transition metal ions leading to coordinatively crosslinked, highly viscous gels

    Exploiting the 1,2,3-triazolium motif in anion-templated formation of a bromide-selective rotaxane host assembly

    Get PDF
    Stimulated by the efficacy of copper (I) catalysed Huisgen-type 1,3-dipolar cycloaddition of terminal alkynes and organic azides to generate 1,4-disubstituted 1,2,3-triazole derivatives, the importance of ‘click’ chemistry in the synthesis of organic and biological molecular systems is ever increasing.[1] The mild reaction conditions have also led to this reaction gaining favour in the construction of interlocked molecular architectures.[2-4] In the majority of cases however, the triazole group simply serves as a covalent linkage with no function in the resulting organic molecular framework. More recently a renewed interest has been shown in the transition metal coordination chemistry of triazole ligands.[3, 5, 6] In addition novel aryl macrocyclic and acyclic triazole based oligomers have been shown to recognise halide anions via cooperative triazole C5-H
.anion hydrogen bonds.[7] In light of this it is surprising the potential anion binding affinity of the positively charged triazolium motif has not, with one notable exception,[8] been investigated. With the objective of manipulating the unique topological cavities of mechanically bonded molecules for anion recognition purposes, we have developed general methods of using anions to template the formation of interpenetrated and interlocked structures.[9-13] Herein we report the first examples of exploiting the 1,2,3-triazolium group in the anion templated formation of pseudorotaxane and rotaxane assemblies. In an unprecedented discovery the bromide anion is shown to be a superior templating reagent to chloride in the synthesis of a novel triazolium axle containing [2]rotaxane. Furthermore the resulting rotaxane interlocked host system exhibits the rare selectivity preference for bromide over chloride..
    • 

    corecore