3,739 research outputs found

    The Dynamics of Adaptation and Evolutionary Branching

    Get PDF
    We present a formal framework for modeling evolutionary dynamics with special emphasis on the generation of diversity through branching of the evolutionary tree. Fitness is defined as the long term growth rate which is influenced by the biotic environment leading to frequency-dependent selection. Evolution can be described as a dynamics in space with variable number of dimensions corresponding to the number of different types present. The dynamics within a subspace is governed by the local fitness gradient. Entering a higher dimensional subspace is possible only at a particular type of attractors where the population undergoes evolutionary branching

    Evolutionary Optimization Models and Matrix Games in the Unified Perspective of Adaptive Dynamics

    Get PDF
    Matrix game theory and optimization models offer two radically different perspectives on the outcome of evolution. Optimization models consider frequency-independent selection and envisage evolution as a hill-climbing process on a constant fitness landscape, with the optimal strategy corresponding to the fitness maximum. By contrast, in evolutionary matrix games selection is frequency-dependent and leads to fitness equality among alternative strategies once an evolutionarily stable strategy has been established. In this review we demonstrate that both optimization models and matrix games represent special cases within the general framework of adaptive dynamics. Adaptive dynamics theory considers arbitrary nonlinear frequency and density dependence and envisages evolution as proceeding on an adaptive landscape that changes its shape according to which strategies are present in the population. In adaptive dynamics, evolutionarily stable strategies correspond to conditional fitness maxima: the ESS is characterized by the fact that it has the highest fitness if it is the established strategy. In this framework it can also be shown that dynamical attainability, evolutionary stability, and invading potential of strategies are pairwise independent properties. In optimization models, on the other hand, these properties become linked such that the optimal strategy is always attracting, evolutionarily stable and can invade any other strategy. In matrix games fitness is a linear function of the potentially invading strategy and can thus never exhibit an interior maximum: Instead, the fitness landscape is a plane that becomes horizontal once the ESS is established. Due to this degeneracy, invading potential is part of the ESS definition for matrix games and dynamical attainability is a dependent property. We conclude that adaptive dynamics provides a unifying framework for overcoming the traditional divide between evolutionary optimization models and matrix games

    From the 'cinematic' to the 'anime-ic': Issues of movement in anime

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below.This article explores the way that movement is formally depicted in anime. Drawing on Thomas Lamarre's concepts of the `cinematic' and the `anime-ic', the article interrogates further the differences in movement and action in anime from traditional filmic form. While often considered in terms of `flatness', anime offers spectacle, character development and, ironically, depth through the very form of movement put to use in such texts.The article questions whether the modes of address at work in anime are unique to this form of animation.Taking into account how the terms `cinematic' and `anime-ic' can be understood (and by extension the cinematic and animatic apparatus), the article also begins to explore how viewers might identify with such images

    Structure analysis of the virtual Compton scattering amplitude at low energies

    Get PDF
    We analyze virtual Compton scattering off the nucleon at low energies in a covariant, model-independent formalism. We define a set of invariant functions which, once the irregular nucleon pole terms have been subtracted in a gauge-invariant fashion, is free of poles and kinematical zeros. The covariant treatment naturally allows one to implement the constraints due to Lorentz and gauge invariance, crossing symmetry, and the discrete symmetries. In particular, when applied to the epepγep\to e'p'\gamma reaction, charge-conjugation symmetry in combination with nucleon crossing generates four relations among the ten originally proposed generalized polarizabilities of the nucleon.Comment: 19 pages, LaTeX2e/RevTeX, no figures, original sections IV.-VI. removed, to be discussed in a separate publication, none of the conclusions change

    К разработке технологии возведения геокомпозитных охранных систем горных выработок

    Get PDF
    У статті розглянуто відмінності використання особливо тонко дисперсних в’яжучих (ОТДВ) у підземних умовах для створення елементів геокомпозитних конструкцій.In article the differences of the use especially thinly of dispersible astringent are considered in underground terms for creation elements of geocomposit constructions

    Generalized polarizabilities of the nucleon studied in the linear sigma model (II)

    Get PDF
    In a previous paper virtual Compton scattering off the nucleon has been investigated in the one-loop approximation of the linear sigma model in order to determine the 3 scalar generalized polarizabilities. We have now extended this work and calculated the 7 vector polarizabilities showing up in the spin-dependent amplitude of virtual Compton scattering. The results fulfill 3 model-independent constraints recently derived. Compared to the constituent quark model there exist enormous differences for some of the vector polarizabilities. At vanishing three-momentum of the virtual photon, the analytical results of the sigma model and of chiral perturbation theory can be related. The influence of the π0\pi^{0} exchange in the tt channel has been discussed in some detail. Besides, the vector polarizabilities determine 2 linear combinations of the third order spin-polarizabilities appearing in real Compton scattering.Comment: 17 pages, 4 figures, latex2e (Revtex), submitted to Z. Phys.

    Generalized polarizabilities and the spin-averaged amplitude in virtual Compton scattering off the nucleon

    Get PDF
    We discuss the low-energy behavior of the spin-averaged amplitude of virtual Compton scattering (VCS) off a nucleon. Based on gauge invariance, Lorentz invariance and the discrete symmetries, it is shown that to first order in the frequency of the final real photon only two generalized polarizabilities appear. Different low-energy expansion schemes are discussed and put into perspective.Comment: 13 pages, 1 postscript figure, Revtex using eps

    Fisher Waves and Front Roughening in a Two-Species Invasion Model with Preemptive Competition

    Full text link
    We study front propagation when an invading species competes with a resident; we assume nearest-neighbor preemptive competition for resources in an individual-based, two-dimensional lattice model. The asymptotic front velocity exhibits power-law dependence on the difference between the two species' clonal propagation rates (key ecological parameters). The mean-field approximation behaves similarly, but the power law's exponent slightly differs from the individual-based model's result. We also study roughening of the front, using the framework of non-equilibrium interface growth. Our analysis indicates that initially flat, linear invading fronts exhibit Kardar-Parisi-Zhang (KPZ) roughening in one transverse dimension. Further, this finding implies, and is also confirmed by simulations, that the temporal correction to the asymptotic front velocity is of O(t2/3){\cal O}(t^{-2/3}).Comment: 8 pages, 5 figures; Papers on related work can be found at http://www.rpi.edu/~korniss/Researc

    A Vast Thin Plane of Co-rotating Dwarf Galaxies Orbiting the Andromeda Galaxy

    Full text link
    Dwarf satellite galaxies are thought to be the remnants of the population of primordial structures that coalesced to form giant galaxies like the Milky Way. An early analysis noted that dwarf galaxies may not be isotropically distributed around our Galaxy, as several are correlated with streams of HI emission, and possibly form co-planar groups. These suspicions are supported by recent analyses, and it has been claimed that the apparently planar distribution of satellites is not predicted within standard cosmology, and cannot simply represent a memory of past coherent accretion. However, other studies dispute this conclusion. Here we report the existence (99.998% significance) of a planar sub-group of satellites in the Andromeda galaxy, comprising approximately 50% of the population. The structure is vast: at least 400 kpc in diameter, but also extremely thin, with a perpendicular scatter <14.1 kpc (99% confidence). Radial velocity measurements reveal that the satellites in this structure have the same sense of rotation about their host. This finding shows conclusively that substantial numbers of dwarf satellite galaxies share the same dynamical orbital properties and direction of angular momentum, a new insight for our understanding of the origin of these most dark matter dominated of galaxies. Intriguingly, the plane we identify is approximately aligned with the pole of the Milky Way's disk and is co-planar with the Milky Way to Andromeda position vector. The existence of such extensive coherent kinematic structures within the halos of massive galaxies is a fact that must be explained within the framework of galaxy formation and cosmology.Comment: Published in the 3rd Jan 2013 issue of Nature. 19 pages, 4 figures, 1 three-dimensional interactive figure. To view and manipulate the 3-D figure, an Adobe Reader browser plug-in is required; alternatively save to disk and view with Adobe Reade
    corecore