
Evolutionary Optimization Models 
and Matrix Games in the Unified 
Perspective of Adaptive Dynamics

Meszena, G., Kisdi, E., Dieckmann, U., Geritz, S.A.H. 
and Metz, J.A.J.

IIASA Interim Report
July 2000

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Institute for Applied Systems Analysis (IIASA)

https://core.ac.uk/display/33897676?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Meszena, G., Kisdi, E., Dieckmann, U., Geritz, S.A.H. and Metz, J.A.J. (2000) Evolutionary Optimization Models and Matrix 

Games in the Unified Perspective of Adaptive Dynamics. IIASA Interim Report. IR-00-039 Copyright © 2000 by the 

author(s). http://pure.iiasa.ac.at/6206/ 

Interim Report on work of the International Institute for Applied Systems Analysis receive only limited review. Views or 

opinions expressed herein do not necessarily represent those of the Institute, its National Member Organizations, or other 

organizations supporting the work. All rights reserved. Permission to make digital or hard copies of all or part of this work 

for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial 

advantage. All copies must bear this notice and the full citation on the first page. For other purposes, to republish, to post on 

servers or to redistribute to lists, permission must be sought by contacting repository@iiasa.ac.at 

mailto:repository@iiasa.ac.at


 

International Institute for Applied Systems Analysis
Schlossplatz 1 • A-2361 Laxenburg • Austria

Telephone: (+43 2236) 807 342 • Fax: (+43 2236) 71313
E-mail: publications@iiasa.ac.at • Internet: www.iiasa.ac.at

 
 

Interim Reports on work of the International Institute for Applied Systems Analysis receive only 
limited review. Views or opinions expressed herein do not necessarily represent those of the 
Institute, its National Member Organizations, or other organizations supporting the work. 

Interim Report IR-00-039 

Evolutionary optimisation models and matrix games 
in the unified perspective of adaptive dynamics  

 
Géza Meszéna (geza.meszena@elte.hu) 
Éva Kisdi (eva.kisdi@utu.fi) 
Ulf Dieckmann (dieckman@iiasa.ac.at) 
Stefan A.H. Geritz (stefan.geritz@utu.fi) 
Johan A.J. Metz (metz@iiasa.ac.at) 
 

 
 

Approved by 

Gordon J. MacDonald (macdon@iiasa.ac.at)  
Director, IIASA 

July 2000 

 

 



IIASA STUDIES IN ADAPTIVE DYNAMICS NO. 44

The Adaptive Dynamics Network at
IIASA fosters the development of new
mathematical and conceptual tech-
niques for understanding the evolution
of complex adaptive systems.
Focusing on these long-term implica-
tions of adaptive processes in systems
of limited growth, the Adaptive Dy-
namics Network brings together scien-
tists and institutions from around the
world with IIASA acting as the central
node.
Scientific progress within the network
is reported in the IIASA Studies in
Adaptive Dynamics series.

THE ADAPTIVE DYNAMICS NETWORK

The pivotal role of evolutionary theory in life sciences derives from its capability to
provide causal explanations for phenomena that are highly improbable in the physico-
chemical sense. Yet, until recently, many facts in biology could not be accounted for in
the light of evolution. Just as physicists for a long time ignored the presence of chaos,
these phenomena were basically not perceived by biologists.
Two examples illustrate this assertion. Although Darwin’s publication of “The Origin
of Species” sparked off the whole evolutionary revolution, oddly enough, the popula-
tion genetic framework underlying the modern synthesis holds no clues to speciation
events. A second illustration is the more recently appreciated issue of jump increases
in biological complexity that result from the aggregation of individuals into mutualistic
wholes.
These and many more problems possess a common source: the interactions of individ-
uals are bound to change the environments these individuals live in. By closing the
feedback loop in the evolutionary explanation, a new mathematical theory of the evolu-
tion of complex adaptive systems arises. It is this general theoretical option that lies at
the core of the emerging field of adaptive dynamics. In consequence a major promise
of adaptive dynamics studies is to elucidate the long-term effects of the interactions
between ecological and evolutionary processes.
A commitment to interfacing the theory with empirical applications is necessary both
for validation and for management problems. For example, empirical evidence indi-
cates that to control pests and diseases or to achieve sustainable harvesting of renewable
resources evolutionary deliberation is already crucial on the time scale of two decades.
The Adaptive Dynamics Network has as its primary objective the development of mathe-
matical tools for the analysis of adaptive systems inside and outside the biological realm.
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No. 1 Metz JAJ, Geritz SAH, Meszéna G, Jacobs FJA, van Heerwaarden JS:
Adaptive Dynamics: A Geometrical Study of the Consequences of Nearly
Faithful Reproduction.
IIASA Working Paper WP-95-099.

In: van Strien SJ, Verduyn Lunel SM (eds.): Stochastic and Spatial Structures of Dynamical
Systems, Proceedings of the Royal Dutch Academy of Science (KNAW Verhandelingen),
North Holland, Amsterdam, pp. 183–231 (1996).

No. 2 Dieckmann U, Law R:
The Dynamical Theory of Coevolution: A Derivation from Stochastic
Ecological Processes.
IIASA Working Paper WP-96-001.

Journal of Mathematical Biology (1996) 34, 579–612.

No. 3 Dieckmann U, Marrow P, Law R:
Evolutionary Cycling of Predator-Prey Interactions: Population Dynamics
and the Red Queen.
Journal of Theoretical Biology (1995) 176, 91–102.

No. 4 Marrow P, Dieckmann U, Law R:
Evolutionary Dynamics of Predator-Prey Systems: An Ecological
Perspective.
IIASA Working Paper WP-96-002.

Journal of Mathematical Biology (1996) 34, 556–578.

No. 5 Law R, Marrow P, Dieckmann U:
On Evolution under Asymmetric Competition.
IIASA Working Paper WP-96-003.

Evolutionary Ecology (1997) 11, 485–501.

No. 6 Metz JAJ, Mylius SD, Diekmann O:
When Does Evolution Optimise? On the Relation between Types of Density
Dependence and Evolutionarily Stable Life History Parameters.
IIASA Working Paper WP-96-004.

No. 7 Ferrière R, Gatto M:
Lyapunov Exponents and the Mathematics of Invasion in Oscillatory or Chaotic
Populations.
Theoretical Population Biology (1995) 48, 126–171.

No. 8 Ferrière R, Fox GA:
Chaos and Evolution.
Trends in Ecology and Evolution (1995) 10, 480–485.



No. 9 Ferrière R, Michod RE:
The Evolution of Cooperation in Spatially Heterogeneous Populations.
IIASA Working Paper WP-96-029.

American Naturalist (1996) 147, 692–717.

No. 10 Van Dooren TJM, Metz JAJ:
Delayed Maturation in Temporally Structured Populations with Non-Equilibrium
Dynamics.
IIASA Working Paper WP-96-070.

Journal of Evolutionary Biology (1998) 11, 41–62.

No. 11 Geritz SAH, Metz JAJ, KisdíE, Meszéna G:
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Abstract 

Matrix game theory and optimisation models offer two radically different perspectives 
on the outcome of evolution. Optimisation models consider frequency-independent 
selection and envisage evolution as a hill-climbing process on a constant fitness 
landscape, with the optimal strategy corresponding to the fitness maximum. By contrast, 
in evolutionary matrix games selection is frequency-dependent and leads to fitness 
equality among alternative strategies once an evolutionarily stable strategy has been 
established. In this review we demonstrate that both optimisation models and matrix 
games represent special cases within the general framework of adaptive dynamics. 
Adaptive dynamics theory considers arbitrary nonlinear frequency and density 
dependence and envisages evolution as proceeding on an adaptive landscape that 
changes its shape according to which strategies are present in the population. In 
adaptive dynamics, evolutionarily stable strategies correspond to conditional fitness 
maxima: the ESS is characterised by the fact that it has the highest fitness if it is the 
established strategy. In this framework it can also be shown that dynamical attainability, 
evolutionary stability, and invading potential of strategies are pairwise independent 
properties. In optimisation models, on the other hand, these properties become linked 
such that the optimal strategy is always attracting, evolutionarily stable and can invade 
any other strategy. In matrix games fitness is a linear function of the potentially 
invading strategy and can thus never exhibit an interior maximum: Instead, the fitness 
landscape is a plane that becomes horizontal once the ESS is established. Due to this 
degeneracy, invading potential is part of the ESS definition for matrix games and 
dynamical attainability is a dependent property. We conclude that adaptive dynamics 
provides a unifying framework for overcoming the traditional divide between 
evolutionary optimisation models and matrix games. 
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Evolutionary optimisation models and matrix games 
in the unified perspective of adaptive dynamics 
 
Géza Meszéna, Éva Kisdi, Ulf Dieckmann, Stefan A.H. Geritz, 
and Johan A.J. Metz 

Introduction 
 
Evolutionary optimisation and matrix game theory are two of the main conceptual 
frameworks in evolutionary ecology. Both have been powerful in shaping research 
hypotheses for empirical work as well as in analysing theoretical models, and both 
frameworks are deeply rooted in modern evolutionary biology. Nevertheless, these 
approaches offer two different, and often conflicting, perspectives on the expected 
outcomes of evolutionary processes.  

Optimisation theory is a straightforward, if narrow, formalisation of Darwin’s idea of 
natural selection as the ‘preservation of favourable variations and the rejection of 
injurious variations’  (Darwin, 1859). In optimisation theory, a measure of fitness is 
directly attached to each heritable variant, henceforth called strategy. Strategies with 
higher fitness outcompete strategies with lower fitness and eventually the strategy with 
the highest fitness, called the ‘optimal’  strategy, takes over the population (see e.g. 
Maynard Smith, 1989). This process of optimisation can be envisaged to take place on 
some fixed adaptive landscape (Wright, 1931; Lande, 1976), which depicts the fitness 
measure as a function of the strategy. If mutations cause only small changes in strategy, 
then the population makes a small step uphill on the adaptive landscape each time an 
advantageous mutant replaces a less fit resident strategy. At evolutionary equilibrium, 
the population will therefore attain a local maximum or ‘peak’  of the adaptive 
landscape. This view of the adaptive process is compatible with the quantitative genetic 
theory of phenotypic evolution (Lande, 1976, 1979).  

Optimisation theory, is applicable only if selection is frequency-independent, i.e., if 
the fitness of each strategy is independent of the kind and frequency of other strategies 
present in the population. The need for incorporating frequency-dependent selection 
into evolutionary models was first recognised in studies of animal behaviour: Here it 
was evident that the success of a behavioural strategy in pairwise interactions between 
animals depends on the strategy of the opponent. Evolutionary game theory and the 
concept of evolutionary stability was devised in this context by Maynard Smith 
(Maynard Smith and Price, 1973; Maynard Smith, 1982), building on the notion of 
‘unbeatable’  strategies established by Hamilton (1967). See Heino et al. (1998) for a 
general definition of frequency dependence.  

When the fitness of a strategy depends on the frequency of other strategies, ‘optimal’ 
strategies can only be defined in a conditional sense, that is, given the strategies of the 
resident population. Accordingly, the concept of simple optimality is replaced by that of 
evolutionary stability. An evolutionarily stable strategy (ESS) is characterised by the 
condition that if all individuals choose this strategy, then no other strategy can spread in 
the population (Maynard Smith, 1982). Notice that the ESS essentially is a static 
concept: There is nothing in the definition of the ESS that ensures that the dynamical 
process of evolution by small mutational steps converges to an ESS (Eshel, 1983; 
Taylor, 1989; Nowak, 1990; Christiansen, 1991). Moreover, directional evolution may 
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lead to the establishment of strategies that are not evolutionarily stable (see e.g. 
Christiansen and Loeschcke, 1980; Hofbauer and Sigmund, 1990; Abrams et al., 1993).  

The evolution of strategies adopted in pairwise interactions between animals often 
leads to mixed strategies that can conveniently be modelled using matrix games 
(Maynard Smith, 1982). An individual with a mixed strategy uses each of a number of 
distinct behavioural patterns, called pure strategies, with a certain probability specified 
by its strategy, irrespectively of the action of its opponent. If fitness is determined by 
the average payoff gained in independent encounters, then the expected fitness of an 
individual is linear in both its own strategy and in the population strategy, leading to the 
matrix formulation. As a consequence, once a mixed ESS is established, each pure 
strategy that is contained in the mixed ESS must have the same fitness as the mixed 
ESS itself (Bishop and Cannings, 1978). The reason for this eventual fitness equality is 
that, if a pure strategy had higher fitness than the mixed ESS, then it could invade the 
ESS. Conversely, if a pure strategy that is contained in the mixed ESS had lower fitness 
than the ESS, then a mixed strategy that is similar to the ESS, but does not include this 
particular pure strategy, could invade. The ESS of a matrix game thus implies fitness 
equality and thus describes a situation that is very different from a population sitting on 
a fitness peak, as is the case for optimisation theory.  

Visualising evolutionary processes based on matrix games in terms of adaptive 
landscapes is less straightforward than in the case of optimisation. The adaptive 
landscape of a matrix game describes fitness as a function of the mixing probabilities. 
Since, under conditions of frequency dependence, the fitness of a strategy depends on 
the resident population’s strategy, the adaptive landscape changes as the composition of 
the population changes during evolution. In particular, when the evolving population 
has attained an ESS, the adaptive landscape becomes flat. (See Garay (1999) for a 
relation between fitness advantage and Fisher’s Fundamental Theorem.)  

Predictions of optimisation models and of matrix games regarding the outcome of 
evolutionary processes are thus qualitatively incompatible. Optimisation models predict 
that, at evolutionary equilibrium, the strategy widespread in a natural population should 
maximise fitness; therefore the widespread strategy should have a higher fitness than 
rare alternative variants, which may arise from mutation, immigration or from artificial 
manipulation. The state of an adaptive process can thus be assessed by measuring 
fitness differences in the field. In contrast, matrix game models of evolution suggest 
that, at an ESS, each strategy observable in a population should have the same fitness: 
Although the ESS is the result of adaptation, the fitness advantage of the ESS over 
alternative strategies disappears once the ESS is attained. In matrix game models, the 
‘ fingerprint’  of adaptation is fitness equality of all different strategies contained in a 
mixed ESS. Under the appropriate ecological conditions, the seemingly contradicting 
expectations derived from optimisation models and matrix games are both supported by 
empirical evidence; see, for example, Pettifor et al. (1988) for observed fitness 
maximisation and Gross (1985) for fitness equality under frequency dependence.  

Although optimisation models and matrix games are not in direct contradiction 
(because they require different conditions to be satisfied), their disagreeing outlook on 
qualitative aspects of the evolutionary process may seem hard to reconcile. In this 
paper, we demonstrate that the theory of adaptive dynamics offers a unifying framework 
in which optimisation models and matrix games represent two different special cases. 
(Non-linear games, however, correspond to the generic case of adaptive dynamics.) 
That optimal strategies and evolutionarily stable strategies of matrix games can be 
regarded as special cases in the context of adaptive dynamics was noticed, for one-
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dimensional strategies, by Geritz et al. (1998). Here we elaborate on this notion and 
extend it to multidimensional strategies. By bringing together results from Maynard 
Smith (1982), Hines (1980, 1987), Eshel (1983), Brown and Vincent (1987a), Hofbauer 
and Sigmund (1990, 1998), Dieckmann and Law (1996), Metz et al. (1996a,b), Geritz et 
al. (1997, 1998), Kisdi (1998), Leimar (in press), Mylius and Metz (in press), 
Dieckmann and Metz (in prep.), and Dieckmann et al. (in prep.), we provide an 
integrative approach to adaptive dynamics, evolutionary optimisation, and matrix 
games. 
 
 
Optimisation models and matrix games 
 
In this section, we summarise the basic formalisms of optimisation models and of 
matrix games in the language of adaptive dynamics. We present this formulation both 
for vector-valued traits and for one-dimensional traits. The latter description is less 
general but is easier to visualise, while still capturing the basic idea. (Fig. 1-3). 
 
 
Optimisation models 

We consider a vector x containing the continuous variables x1,...,xn that characterises 
a multidimensional strategy and that undergoes simultaneous frequency-independent 
evolution. The elements of x thus may stand, for example, for body size, fecundity, time 
spent foraging, etc. In the simplest case, the strategy is only one-dimensional and is 
given by a single scalar variable, x.  

A general measure of fitness can be defined as the long-term per capita population 
growth rate of a strategy when it appears as a rare mutant in a given resident population. 
The fitness, therefore, is derived from the underlying population dynamics (“ invasion 
fitness” , Metz et al., 1992; Rand et al., 1994; Ferriere and Gatto, 1995). In contrast, 
optimisation models apply to those ecological settings where the long-term growth rate 
of a strategy is determined by a fitness measure W(x) that is independent of the kind and 
frequency of other strategies in the population. For example, foraging models often 
assume that the amount of food collected per unit time unequivocally determines the 
population growth rate of a strategy and therefore can be used as an indirect measure of 
fitness (e.g. Charnov, 1976, Stephens and Krebs, 1986). In optimisation models, a 
mutant with strategy y can spread in a population with established strategy x if its 
fitness advantage, sx(y), defined as 
 
 )()()( xyyx WWs −=  (1) 
 
is positive; otherwise the mutant is deleterious and dies out.  

The optimal strategy, denoted by x*, maximises W(x). If  x* is a local interior 
optimum, it is characterised by the standard conditions for the maximum of a 
multivariate function, 
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and 
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The locally optimal strategy obviously cannot be invaded by any nearby mutant 
( sx y* ( ) < 0 for all y close to x*), and therefore is a (local) ESS. On the other hand, the 

optimal strategy itself can invade any other nearby strategy (sx x( *) > 0 for all x close 

to x*). The optimal strategy is also the best invader in the sense that for any given 
resident strategy it is the optimal strategy x* that has the largest fitness advantage and 
therefore spreads fastest in a population. In course of evolution, each time that an 
advantageous mutant strategy replaces the former resident strategy, the population 
acquires a higher fitness and therefore successively ascends on the adaptive landscape 
W(x) until the peak is reached and evolution comes to a halt (see Figure 1).  

This notion of optimality can be extended to density-dependent optimisation models 
(Charlesworth and Leon, 1976; Michod, 1979; Meszéna and Pásztor, 1990; Hernandez 
and Leon, 1995), giving rise to optimisation principles of a different kind. These are 
applicable if, for example, the environment of a population can be characterised by a 
one-dimensional quantity, such as the total population density N, to which the growth 
rate of all possible strategies reacts monotonically (Metz et al. 1996b). In such cases, the 
fitness W(y,N(x)) of a rare mutant with strategy y has to be evaluated at the equilibrium 
density N(x) of the resident strategy x and is thus dependent on the resident strategy. A 
strategy x then is optimal if W(y,N(x)), as a function of its first variable, is maximal at 
y=x. It is easy to see that this condition of optimality is equivalent to maximising the 
equilibrium density N(x) as a function of the strategy x (Charlesworth, 1980, Mylius and 
Diekmann, 1995). Therefore, provided that the mentioned monotonicity condition 
holds, the optimal strategy is determined, once again, by maximising a fixed strategy-
dependent function, N(x), despite the fact that the fitness function W itself changes its 
shape in the course of the evolutionary process. 
 
Matrix games 

In the context of evolutionary matrix games, the elements of the strategy vector x 
determine the probabilities for an individual to choose among a n different pure 
strategies; therefore x1+...+xn=1. Let A be the payoff matrix of the evolutionary game, 
i.e., the matrix components Aij denote the amount by which an individual increases its 
fitness when it plays the ith pure strategy in a contest against an opponent that plays the 
jth pure strategy. Under the assumption of strategy-independent encounters, the average 
payoff of a rare mutant strategy y in a resident population playing strategy x is 
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 yAxxy == ∑
ji

jiji xAyE
,

),(  (3) 

Notice that E(y,x) is bilinear in x and y. The mutant can spread if it has a greater average 
payoff than the resident, that is, if the fitness advantage 
 
 s E Ex y y x x x yAx xAx( ) ( , ) ( , )= − = −  (4) 
 
is positive; otherwise the mutant dies out. Notice that sx(y) is linear in y but quadratic in 
x.  

The well-known conditions for a strategy x* to be an ESS of a matrix game were 
given by Maynard Smith (1982, p. 14; Maynard Smith and Price, 1973) and are 
described by the following two inequalities 
 
 E(y,x*) ≤ E(x*,x*) for all y and (5a) 
 
 E(x*,y) > E(y,y) for y≠x* if equality holds in (5a). (5b) 
 
According to Equation (4), these conditions are equivalent to 
 
 sx*(y) ≤  sx*(x*) = 0 for all y and (6a) 
 sy(x*) > sy(y) = 0 for y≠x* if equality holds in (6a). (6b) 
 
The first ESS condition (6a) means that each possible mutant is either deleterious or 
neutral when it is infinitesimally rare in a population playing the ESS. This is obviously 
necessary if the ESS is to be immune against invasion. More significantly, the second 
ESS condition (6b) states that for all y for which neutrality holds in (6a), the ESS, when 
employed by a rare mutant, must be able to invade a resident population with strategy y. 

According to a theorem by Bishop and Cannings (1978), all pure strategies contained 
in a mixed ESS are neutral in a resident population that plays the ESS. Since these pure 
strategies payoff equally well, so does any combination of them: All mixed strategies 
that contain the same pure strategies as the ESS are therefore neutral as well, and 
sx*(y)=0 is constant as a function of y in the range of y that has the same non-zero 
components as x* (i.e., yi > 0 only if xi* > 0). The proof of the Bishop-Cannings 
theorem relies only on the assumption of fitness advantages being a linear function of 
mutant strategies y. The invariance of fitness over such subsets of strategies implies that 
mixed ESSs are never fully defined by the first ESS condition (6a) alone, but always 
rely on the second ESS condition (6b) as well. The mixed ESS must therefore always be  
able to invade a resident population of individuals that use the same pure strategies in a 
different mixture. 

The fitness equality resulting from the Bishop-Cannings theorem can be 
conveniently illustrated in the case of two pure strategies played with probabilities x and 
1-x, respectively. Relative to a mixed ESS (0<x*<1) both pure strategies and any 
mixture of them are neutral, i.e., sx*(y)=0 for all 0≤y≤1 (see Figure 2). This behaviour is 
not unexpected because the function sx*(y), being linear in y, cannot have an interior  
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Figure 1  The adaptive landscape of frequency-independent optimisation, rendered in four ways suitable 
to compare with the frequency-dependent cases. (a) Fitness function or adaptive landscape. Evolution 
converges to the fitness maximum as indicated by the arrows. (b) Fitness advantage. Curves represent the 
fitness advantage of the mutant as a function of the mutant strategy for the different resident strategies 
separately. Vertical lines indicate which curve belongs to which resident strategy. That these curves only 
differ by their offsets is a characteristic feature of the frequency-independent case. (c) Fitness of the 
mutant as a function of mutant and resident strategy. Thick lines: fitness as a function of the mutant 
strategy; these are the same curves as shown in (a). Thin lines: fitness as a function of the resident 
strategy. There is no dependence on the resident strategy in this case. Arrows along the main diagonal of 
the bottom plane indicate the direction of evolution, i.e., the sign of the fitness gradient. (d) Fitness 
advantage of the mutant as a function of resident and mutant strategy. Grey areas on the bottom plane 
indicate combinations of resident and mutant strategies for which the mutant can grow and invade; in 
contrast, white areas correspond to mutants that are deleterious relative to to the considered resident 
strategy. The main diagonal naturally is neutral to invasion. The crossing point of the main diagonal and 
of the second zero contour line corresponds to an ESS attractor that is located at the optimal strategy. The 
direction and outcome of evolution can be predicted based solely on this ‘Pairwise Invasibility Plot’ 
(PIP). The antisymmetric shape of the PIP is the fingerprint of optimising evolution. 
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x* is to be an ESS. When the resident strategy x is different from the ESS, sx(y) is 
described by a tilted line such that sx(x) is zero and sx(x*) is positive. This follows 
maximum with respect to y. Since sx*(x*) is zero (Equation (4)), it follows that if sx*(y) 
were not zero everywhere then it would be positive for some y, which is impossible if 
directly from the fact that, according to (6b), the ESS must be able to invade any other 
resident strategy. Obviously, any mutant strategy that lies between the resident strategy 
and the ESS is then able to invade (see Figure 2b). If the mutants differ only slightly 
from the resident, then mutants nearer to the ESS take over so that the population 
gradually evolves towards the ESS. As evolution converges towards the ESS, the slope 
of the adaptive landscape decreases to zero (Hines, 1987; see also Figure 2). Cressman 
(1996) discusses density-dependent matrix games. 
 
Adaptive dynamics 
 
In this section we briefly introduce the basic concepts of adaptive dynamics theory. The 
framework outlined here was developed by Metz et al. (1996a), Geritz et al. 
(1997,1998) and Dieckmann and Law (1996) for one-dimensional strategies and has 
been summarised in Dieckmann (1997). The multidimensional extension is based on 
Dieckmann and Law (1996), Metz et al. (1996a), Leimar (in press) and Dieckmann et 
al. (in prep.). 
 
Invasion fitness 

In order to study the generic patterns of evolution driven by frequency-dependent 
selection, the fitness of a mutant strategy y in a resident population with strategy x, sx(y), 
must not be constrained to any particular form. What sx(y) looks like depends on the 
biological problem at hand; we merely assume that sx(y) is known, twice continuously 
differentiable, and defined in such a manner that mutants with positive values of sx(y) 
can grow and invade, whereas mutants with negative values of sx(y) die out in a resident 
population of strategy x. Notice that by this definition sx(x)=0 holds for any x because 
the resident strategy itself is neither growing nor declining in its own established 
population. Optimisation models and matrix games are specific cases of this general 
definition in which sx(y) is given by Equation (1) or by Equations (3) and (4), 
respectively. 

For a resident strategy x* to be evolutionarily stable it is necessary that sx*(y)≤0 for 
all y, i.e., that no mutant has a fitness advantage when it interacts with the resident only. 
The relation sx*(y)<0 for all ∗≠ xy is stricter and guarantees that the mutant dies out if 
its initial frequency is sufficiently low. When sx*(y) is a nonlinear function of y, fitness 
equality, sx*(y)=0, occurs only in very special and degenerate cases. The generic 
condition of evolutionary stability is sx*(y)< sx*(x*)=0 for all y≠x*. In other words, 
fitness as a function of the mutant strategy must attain a maximum at the ESS, provided 
that the ESS is the established resident (Maynard Smith, 1982). The ESS can therefore 
be regarded as a conditionally optimal strategy, i.e., it is optimal in its own established 
population (see Figure 3). Obviously, this conditional optimality does not impart any 
information about the outcome of selection when the ESS has not yet been established. 
at all of invading such an arbitrary resident. The ESS also does not necessarily coincide 
with the attractor of directional evolution (see, for example, Eshel, 1983; Abrams et al., 
1993).  
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Figure 2  The adaptive landscape of matrix games. (a) For each resident strategy, fitness is a linear 
function of the mutant strategy, but the slopes of the lines differ in dependence on the resident strategy. 
Vertical lines indicate which line belongs to which resident strategy. The central strategy is the ESS; 
evolution therefore converges towards this strategy. The fitness function or adaptive landscape that 
corresponds to the ESS as resident is horizontal: once the ESS is established, all mutants are neutral. (b) 
As a mutant, the ESS strategy has positive fitness advantage and can therefore invade any other resident 
strategy: at the ESS, all lines other than the horizontal one are above zero. This ensures that the second 
ESS condition is satisfied. It also implies that the fitness lines are tilted in a way that guarantees 
convergence towards the ESS. (c) Mutant and resident strategies are now varying along separate axes. 
The changing slope of the thick lines, which are the same as in (a), shows frequency dependence: the 
higher the percentage of a pure strategy is in the resident population, the smaller its payoff will be. (d) In 
the PIP on the bottom plane, the crossing point of the two straight zero contour lines determines the 
location of the ESS. Notice that the second zero contour line is not only straight but also parallel to the 
mutant’s axis: this feature reflects the fitness equality or mutant neutrality that ensues once the ESS is 
established and is the fingerprint of evolution under a linear fitness function. 
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Directional evolution 
In order to model the evolutionary process in the framework of adaptive dynamics, 

we assume that mutations are of small phenotypic effect so that a mutant y is always 
similar to its ancestor x; xy − , therefore, is small. The population makes a small 

evolutionary step each time a mutant successfully invades and replaces the former 
resident (Metz et al., 1992; Dieckmann, 1994; Dieckmann et al.,1995; Metz et al., 
1996a; Dieckmann and Law, 1996; Geritz et al., 1997, 1998; see Jacobs et al., in prep.; 
Geritz et al., in prep. for proofs that an invader replaces the resident in case of small 
evolutionary step and non-zero fitness gradient.). A sequence of these small steps 
constitutes a stochastic evolutionary path that can be approximated by the deterministic 
trajectory described by the so-called canonical equation of adaptive dynamics, 
 

 
xy

x

y
y

xCxx
x

=

=
∂

∂α )(
)()()(

2

1 s
Nu

dt

d
 (7) 

(Dieckmann and Law, 1996, Dieckmann and Metz, in press). Here u denotes the 
probability of a mutation per birth event and N(x) is the equilibrium size of the resident 
population for strategy x. The factor ½ reflects the fact that one half of the nearby 
mutants of a strategy are deleterious and thus cannot contribute to the evolutionary 
change described by (7). The constant α  depends on details of the individual-based 
demography of the evolving population and equals 1 for the continuous-time birth-and-
death processes considered in Dieckmann and Law (1996). The variance-covariance 
matrix of the mutation distribution is given by C, which therefore characterises the 
expected size of mutational steps in different components of x as well as their potential 
correlations. The equilibrium density, N(x), may depend on the resident strategy x, 
while u and C may depend on x but in the simplest case are just constants. Finally, the 

fitness gradient 
∂

∂
sx

y x

y
y
( )

=

 describes the force of selection: Given the adaptive 

landscape for a resident strategy x, this gradient points into the direction of the steepest 
ascent on the adaptive landscape and therefore determines the direction as well as scales 
the speed of evolutionary change. For one-dimensional strategies, C is simply the 
variance of mutational changes in x and evolution proceeds towards smaller or larger 
values of x depending on the sign of the fitness gradient, i.e., depending on whether 
smaller or larger mutants are advantageous and thus capable of replacing the resident. 
For multidimensional strategies, however, the variance-covariance matrix C can also 
affect direction and outcome of the evolutionary process. 
 
Evolutionary singularities 

Evolutionarily singular strategies are the fixed points of adaptive dynamics as 
described by the canonical equation (7). A strategy x* therefore is singular if its fitness 

gradient 
*

)(

xxy

x

y
y

==∂
∂s

 vanishes. For simplicity we do not consider boundary fixed 

points of Equation (7) where the fitness gradient need not be zero (Dieckmann and Law 
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Figure 3 An adaptive landscape of adaptive dynamics. The example shows a ‘Garden of Eden’ 
configuration: an ESS, which nevertheless acts as an evolutionary repellor. (a,b) In adaptive dynamics 
theory, there is no difference between fitness and fitness advantage because the fitness of a an invader 
that is identical to a given resident is zero according to the definition of invasion fitness. (c,d) The 
evolutionarily singular strategy can be located in the PIP as the crossing point between the two zero 
contour lines. This singular strategy corresponds to a local fitness maximum with respect to variations in 
the mutant strategy; it is therefore an ESS. However, the fitness gradients around the ESS point away 
from the singular strategy: although the singular strategy would be stable once reached, it cannot be 
attained by small mutational steps. Notice that both evolutionary stability and the repelling nature of the 
singular strategy can be deduced just from studying the PIP. 
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1996). Singular strategies are the only candidates for ESSs: an interior strategy with a 
non-zero fitness gradient always has potential invaders. Singular strategies can be fully 
characterised in terms of four properties (Geritz et al., 1998). For the purposes of this 
paper, however, we shall consider only the following three properties.  

 
(i) A singular strategy is convergence stable (Christiansen, 1991), if it is an 
asymptotically stable fixed point of the canonical adaptive dynamics given by Equation 
(7), (Dieckmann and Law , 1996 and Marrow et al.,1996). The stability of a fixed point 
depends not only on the fitness function sx(y) but also on the variance-covariance matrix 
C. However, the evolutionarily singular strategy x* is asymptotically stable for any 
choice of the variance-covariance matrix if the matrix 
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  is negative definite (8) 

 
(Leimar, in press).  

For one-dimensional strategies this condition for convergence simplifies to 
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(Eshel, 1983). To see this, notice that the local fitness gradient has to be positive for 
x<x* and negative for x>x* to ensure convergence stability. That is, the derivative of the 

fitness gradient 










∂
∂

=xy
y

s

dx

d
 must be negative, which leads to the previous expression. 

(ii) A singular strategy x* is locally evolutionarily stable if no nearby mutant can invade 
the resident population of x*. As we have seen in the previous section, the generic (and 
sufficient) condition for evolutionary stability is that sx*(y) attains a maximum at y=x*, 
i.e., that the matrix 
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  is negative definite. (9) 

 

For one-dimensional strategies, 
∂

∂

2

2
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s y

y
x

y x x

( )

*= =

<  is the analogous condition for a 

fitness maximum (Maynard Smith, 1982, Brown and Vincent, 1987a).  
(iii) A third property of the singular strategy x* determines whether, as a rare mutant, it 
can spread in the resident population of a nearby strategy. (Notice that this requirement 
differs from convergence stability: A convergence stable singular strategy may not be 
able to invade, and vice versa.) Locally, the singular strategy has invading potential 
with respect to the resident population of any other strategy that is similar to itself if 
sx(x*) > sx(x) = 0, i.e., if sx(x*) attains a local minimum at x* as a function of x. 
Generically this is the case if 
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or, for one-dimensional strategies, if 
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>  (Kisdi and Meszéna, 1993, 

1995; Apaloo, 1997; Geritz et al., 1997,1998).  
(iv) A fourth property of evolutionary singularities (determining whether there exists 
protected dimorphisms in the singularity’s neighbourhood) is important for resolving 
the full scope of generic evolutionary patterns near evolutionary singularities (Metz et 
al., 1996a, Geritz et al., 1997,1998). It is, however, not relevant for our present purposes 
and therefore we shall not discuss it.  

The three properties given by Conditions (8), (9), and (10) are not fully independent. 
In particular, a strategy that is evolutionarily stable and that is able to invade other 
nearby strategies is also necessarily convergence stable. In order to see this, we need the 
following relationship between the second derivatives of sx(y), obtained by replacing 
sx(y) by its Taylor-expansion in the equation sx(x)=0 (Metz et al., 1996a): 
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or, for one-dimensional strategies,  
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Using Equation (11a), Condition (8) can be rewritten such that the singularity is 

convergence stable for any choice of the variance-covariance if 
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− < ). It now becomes evident that this  

condition is always satisfied if the singular strategy is both evolutionarily stable (the 
first matrix is negative definite according to Condition (9)) and has invasion potential 
(the second matrix is positive definite according to Condition (10)). 
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Optimisation models and matrix games as special cases of 
adaptive dynamics 
 
Optimal strategies as well as matrix game ESSs must be evolutionarily singular 
strategies. At non-singular strategies there is directional evolution according to Equation 
(7), resulting from the invasion of nearby advantageous mutants. In optimisation models 
this invading mutant must have higher fitness, therefore the original non-singular 
resident cannot have been optimal. Similarly, invasion cannot occur at an ESS of a 
matrix game. 
 
Optimisation models 

In optimisation models, sx(y) takes the form given in Equation (1); therefore all 

mixed partial derivatives are zero, 
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Condition (2b), 
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 is negative definite at the optimal strategy x*. Three 

properties of the optimal strategy then follow immediately (Metz et al., 1996b; Kisdi, 
1998; Mylius and Metz, in press): (i) The optimal strategy is convergence stable 
because the first term in Condition (8) is negative definite according to Condition (2b) 
and the remaining terms are zero. (ii) The optimal strategy is an ESS since Condition (9) 
is immediately satisfied by Condition (2b). (iii) The optimal strategy can invade all 
other strategies. To see this, notice that the second and third terms in equation (11a) 
vanish and that the last term is negative definite. Consequently, the first term must be 
positive definite, and this is equivalent to Condition (10). 
 

In the simpler case of one-dimensional strategies we can conclude that the mixed 

partial derivative 
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 is zero because sx(y) is of the form given by Equation (1), 

and that 
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 is negative because the optimal strategy x* maximises sx(y). The 

latter condition is equivalent to evolutionary stability. Moreover, x* is an attractor since 
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, which is negative. Finally, 

since the second term in Equation (11b) is zero and the third term is negative, the first 

term 
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 must be positive. This implies that the singular strategy x* has the 

potential to invade any other resident population with a strategy that is similar to itself. 
Notice that, because all mixed partial derivatives vanish, the conditions for asymptotic 
stability, for evolutionary stability, and for invading potential are all equivalent. 
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Matrix games 
In matrix games, the components of the vector x represent the probabilities of 

playing different pure strategies. This implies x1+...+xn=1, and therefore the n 
components are not independent of each other. The adaptive dynamics in Equation (7) 
thus has to be constrained to the set of vectors with x1+...+xn=1, called the n-dimensional 
simplex, Sn. This amounts to a constraint that has to be imposed on the mutational 
variance-covariance matrix C: Mutations in the different components of x cannot be 
independent because the resulting mutant strategy must still satisfy x1+...+xn=1. This 
means that x1,...,xn cannot change in an uncorrelated manner, because if some elements 
of x increase then it is necessary for others to decrease in order to maintain a constant 
sum. Constraining C in this manner affects the stability conditions (8), (9), and (10) 
such that negative or positive definiteness is required only for vectors with x1+...+xn=1. 
(More precisely, instead of requiring that a matrix M is positive definite, we only need 
to require that xMx is a positive definite quadratic form for x∈  Sn.) In this subsection, 
we shall use negative or positive definiteness in this sense. (Alternatively, one can 
rewrite the theory in terms of n-1 independent strategy variables, say x1,…,xn-1, and 
replace xn by 1- x1-…-xn-1. The resulting fitness function sx(y) remains linear in the 
independent variables y1,…,yn-1.).  

In order to simplify the analysis, we have assumed that the evolutionarily singular 
strategy of the adaptive dynamics lies in the interior of the strategy space and not on its 
boundary. Accordingly, we restrict attention here to fully mixed ESSs, which contain 
each pure strategy with positive probability (xi* > 0 for all i).  

According to the Bishop-Cannings theorem, all (pure or mixed) strategies are neutral 
in the resident population of a fully mixed singular strategy x*. In Condition (6a), 
therefore, equality holds for all y. Evolutionary stability thus depends on Condition (6b): 
x* as a rare mutant must be able to invade any other strategy. In matrix games, 
evolutionary stability and invading potential are thus intimately linked.  

Asymptotic stability follows from evolutionary stability and invading potential not 
only in the generic case (see previous section) but, by analogous reasoning, also in the 

degenerate case of matrix games. For matrix games 
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sx(y) is linear in y (Equation (4)). According to Condition (10), x* as a rare mutant is 
able to invade all nearby resident strategies and hence is an ESS of the matrix game if 

∂
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 is positive definite. Notice that since sx(y) is quadratic in x, this is a 

global condition. In Equation (11a), the first term is positive definite and the last term 

vanishes. The remaining terms, 
∂
∂ ∂
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


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, must then be 

negative definite, which implies that Condition (8) is satisfied (see also Hines, 1980; 
Cressman and Hines, 1984; Hofbauer and Sigmund, 1990). In the case of one-
dimensional strategies (i.e., in 2x2 games with mixing probabilities x and 1-x, 

respectively), we have 
∂

∂

2

2 0
s y

y
x ( )

=  since sx(y) is a linear function of y 
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and
∂

∂

2

2

s y

x
x

y x x

( )

*= =

 must be positive for x* to be able to invade other strategies and 

hence to be the ESS. Equation (11b) then guarantees that 
∂

∂ ∂

2s y

x y
x

y x x

( )

*= =

 is negative, 

which, together with 
∂

∂

2

2 0
s y

y
x ( )

= , implies that Condition (8) is satisfied. 

 
Discussion 
 
The simplest version of optimisation models amount to an unconditional maximisation 
of fitness: strategies with higher fitness always replace strategies with lower fitness until 
the optimal strategy is established. This is the most straightforward formalisation of the 
Darwinian idea of survival of the fittest, and it is easily visualised as evolution moving 
uphill on a fixed adaptive landscape. Optimisation, however, is applicable only if a 
measure of fitness, W(x) in Equation (1), can be found that characterises each strategy 
independently of the actual composition of the population (Figure 1).  

A universally applicable measure of fitness is the long-term per capita growth rate of 
a rare mutant strategy (Metz et al., 1992). This growth rate depends not only on the 
strategy of the mutant but also on the environment in which such a mutant lives. This 
environment is characterised in terms of variables like the abundance and quality of 
resources, abundance and satiation status of predators, presence and harmfulness of 
pathogens, behavioural actions undertaken by conspecifics, etc. These environmental 
variables, in turn, tend to be affected by the number and strategy of other individuals 
present in the population. Therefore, the existence of a good fitness measure that is 
independent of the resident population is more the exception than the rule. Instead, 
environmental feedback and the resulting density and frequency dependence of 
selection pressures are important phenomena in a wide variety of ecosystems.  

A rare mutant’s long-term growth rate depends on the resident population even in 
those ecological situations where optimisation models apply. A negative feedback 
necessarily exists between population growth and population density: Otherwise 
populations would exhibit sustained exponential growth, which is biologically 
impossible. Optimisation models may be applicable if growth rates depend on a single 
density parameter (such as total population density). In this case, equilibrium densities 
are maximised (Charlesworth, 1980, Mylius and Diekmann, 1995). Under even more 
specific assumptions, the growth rate r or the lifetime reproductive success R0 can be 
expressed as the product of a density-dependent and a strategy-dependent component 
(Mylius and Diekmann, 1995; Pásztor et al., 1996). Notice, however, that from a 
mathematical point of view it is often most straightforward to retain the long-term 
growth rate of a strategy when it is rare as the ultimate measure of fitness and consider 
density dependence explicitly; this choice, of course, does not alter the nature of the 
optimisation problem. If a population is limited by a single resource, then the abundance 
of this resource will be minimised by the evolutionarily optimal strategy (Tilman, 1982; 
Mylius and Diekmann, 1995). If, however, the environment is characterised by two or 
more variables, then optimisation is no longer possible: Any fitness measure then 
necessarily depends on the strategy (or strategies) established in the population (Tilman, 
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1982; Kisdi and Meszéna, 1993, 1995; Metz et al. 1996b; Heino et al., 1998; Meszéna 
and Metz, in press).  

Adaptive dynamics theory considers fitness as being determined by the strategy of a 
focal individual as well as by the strategies of the resident population. An advantage of 
adaptive dynamics theory is that it is based on generic, nonlinear fitness functions. 
Indeed, frequency-dependent selection with a nonlinear dependence of fitness values on 
strategies is ubiquitous: it occurs in the context of resource competition (Christiansen 
and Loeschcke 1980 1984, Loeschcke and Christiansen, 1984, Brown and Vincent, 
1987b; Taper and Case, 1992; Metz et al., 1996a; Dieckmann and Doebeli, 1999; 
Doebeli and Dieckmann, in press), predator-prey systems (Brown and Vincent, 1992; 
Matsuda and Abrams, 1994a; Doebeli and Dieckmann, in press), multiple habitats 
(Brown and Pavlovic, 1992; Meszéna et al., 1997; Kisdi and Geritz, 1999), stochastic 
environments (Ellner, 1985; Cohen and Levin, 1991; Kisdi and Meszéna, 1993, 1995), 
asymmetric competition (Maynard Smith and Brown, 1986; Abrams and Matsuda, 
1994; Matsuda and Abrams, 1994b; Law et al., 1997; Kisdi, 1999), and mutualistic 
interactions (Law and Dieckmann, 1998; Doebeli and Dieckmann, in press).  

Since a mutant can only invade if it has a higher fitness than the resident, each small 
evolutionary step is made uphill on the adaptive landscape, entailing some resemblance 
to optimisation models. Under frequency dependence, however, the adaptive landscape 
depends on the resident population and therefore changes with each replacement of a 
resident strategy with a mutant strategy (see, for example, Brown and Pavlovic, 1992; 
Brown and Vincent, 1992; Dieckmann 1994; Geritz and Kisdi, in press). Evolution 
comes to a halt if the population cannot be invaded by any new mutant, i.e., if an 
evolutionarily stable strategy is established. Generically, the ESS is located at a peak of 
the adaptive landscape that results from the resident ESS population. In other words, the 
fitness of the ESS is the highest possible provided that the ESS is the resident. The ESS 
is thus characterised by a conditional maximisation of fitness. Evolutionarily stable 
polymorphisms, comprising several strategies, can be defined analogously (Brown and 
Vincent, 1987ab; Metz et al. 1996a, Geritz 1998).  

Matrix games are part of an important but special class of frequency-dependent 
models in which fitness is a linear function of the mutant strategy and for which the 
adaptive landscape is therefore described by a straight line or hyperplane (Hines, 1987; 
see also Figure 2). Other members of this class are games in which the mutant’s payoff 
is nonlinear in the opponent’s strategy but still linear in the strategy of the mutant itself, 
E(y,x)=y⋅f(x)+const. For example, the sex ratio game (Maynard Smith, 1982) has a 
payoff function of this form. If the adaptive landscape is linear, then it cannot have an 
internal maximum and therefore must be flat once the (fully mixed) ESS is established. 
When infinitesimally rare, alternative strategies are neutral in the population of the ESS. 
Consequently, an additional condition is necessary to ensure that alternative mutants 
decline in number whenever they are present at a small but positive frequency. For 
matrix games, the payoff to a strategy can be decomposed into a sum of the payoff 
received in encounters with the resident and the payoff from encounters with the rare 
mutant. The first term is equal for all strategies when the resident is the (fully mixed) 
ESS. All the fitness difference between the ESS and the alternative mutants therefore 
comes from the second term: If the mutant is to die out, the ESS must perform better 
when encountering the alternative strategy than the alternative strategy against itself. 
This means that the ESS as a rare mutant must be able to invade the established 
population of the alternative strategies (Condition (6b); Maynard Smith and Price, 1973; 
Maynard Smith, 1982; Pohley and Thomas, 1983). Notice that the described 
decomposition of fitness is valid only in matrix games: There no simple criterion is 
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available similar to Condition (6b) if the payoff is given by y⋅f(x)+const.) with nonlinear 
f(x).  

In the context of matrix games, the linearity of fitness is a consequence of the 
assumption that fitness is determined by the average payoff gained in independent 
encounters in well-mixed populations. The fragility of this assumption is underscored 
by the fact that in iterated and/or spatially extended games the encounters are no longer 
independent of each other; consequently, the fitness function becomes nonlinear 
(Hofbauer and Sigmund, 1990, 1998; Nowak and May, 1992; Szabó and Töke, 1998, 
Brauchli et al., 1999; Szabó et al., in press). The linearity of fitness is also lost if payoffs 
fluctuate over generations (Metz, unpublished).  

When the shape of the fitness function sx(y) is unrestricted, the properties of 
evolutionary singularities (asymptotic stability, evolutionary stability, and invading 
potential) are pairwise independent. For example, evolutionarily stable strategies are not 
necessarily attractors and thus may be unreachable by evolution. Eshel (1983), Nowak 
(1990) and Kisdi and Meszéna (1995) provide examples for such ‘Garden of Eden’ 
singularities (see also Figure 3). On the other hand, there exist convergence stable 
strategies that are not evolutionarily stable: The evolutionary process then converges 
towards a local minimum instead of maximum of the adaptive landscape; see Hofbauer 
and Sigmund (1990), Nowak (1990), Brown and Pavlovic (1992), Brown and Vincent 
(1992), Abrams et al. (1993), Day (in press) for examples. Disruptive selection near 
these points can lead to evolutionary branching, a process during which an initially 
monomorphic population splits up into two distinct strategies that become separated by 
a widening gap (Metz et al., 1996a; Geritz et al., 1997, 1998). Examples for 
evolutionary branching have been found e.g. by Metz et al. (1992), Doebeli and Ruxton 
(1997), Meszéna et al. (1997), Boots and Haraguchi (1999), Geritz et al. (1998, 1999), 
Kisdi (1999), Kisdi and Geritz (1999), Parvinen (1999), Mathias and Kisdi (in press) 
and Mathias et al. (submitted). Evolutionary branching accompanied by the evolution of 
reproductive isolation has been suggested as a basis for adaptive speciation that may 
occur in sympatry (Dieckmann and Doebeli, 1999; Doebeli and Dieckmann, in press; 
Kisdi and Geritz, in press; Geritz and Kisdi, in press).  

By contrast, in optimisation models the optimal strategy is always evolutionarily 
stable, asymptotically stable and can invade nearby resident strategies, i.e., these three 
properties are linked (Kisdi and Meszéna, 1993, 1995; Kisdi, 1998). Asymptotic 
stability, evolutionary stability, and invading potential are also linked in matrix games, 
but in a slightly different sense. In optimisation models, asymptotic stability and 
invading potential are implied by evolutionary stability. In matrix games, however, 
invading potential is necessary for evolutionary stability, since the model is degenerate 
with respect to the generic condition for evolutionary stability. Since invading potential 
is thus part of the ESS definition for matrix games, only asymptotic stability remains to 
be regarded as a consequence of evolutionary stability (Hines, 1980; Cressman and 
Hines, 1984; Hofbauer and Sigmund, 1990).  

If an optimisation model is perturbed such that Equation (1) does not hold anymore, 
but the perturbation is small, then the model still has a convergence stable singular 
strategy that is an ESS and that also can invade other nearby strategies. This can be seen 
from the fact that Conditions (8), (9), and (10) are satisfied in optimisation models as 
strict inequalities. An illustration for this structural stability is given by Kisdi and 
Meszéna (1993). They consider a density-dependent life-history model, where 
optimisation is applicable when the environment is stable; for temporally fluctuating 
environments, however, selection in the model becomes frequency dependent. If the 
temporal fluctuations are weak (i.e., if the optimisation model is only slightly 
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perturbed), then there is still a strategy near the original optimum that is attracting, 
evolutionarily stable and has invading potential.  

Matrix games do not possess this kind of structural stability. Since equality holds in 
Condition (9), the singularity of a matrix game can lose its evolutionary stability due to 
the slightest perturbation. Asymptotic stability and invading potential will be retained 
because strict inequalities hold in Conditions (8) and (10). In case of one-dimensional 
strategies, loss of evolutionary stability implies that the singularity bifurcates into an 
evolutionary branching point (Geritz et al., 1998). Dieckmann and Metz (in prep.) 
provide examples for such bifurcations in perturbed matrix games.  

In this paper, we have considered monomorphic resident populations only. 
Coexistence of strategies is not possible in optimisation models: The strategy with the 
highest fitness W(x) outcompetes all others, or, in the case of density-dependent 
optimisation under the described monotonicity condition, the strategy with the highest 
equilibrium density (lowest equilibrium resource level) wins over the rest. Coexistence 
requires frequency dependent selection. In case of resource competition, this 
requirement translates into the well-known ecological requirement of having more than 
one resources to sustain more than one consumer (MacArthur and Levins, 1964, Levin, 
1970, Tilman, 1982, Meszéna and Metz, in press). Optimisation models are structurally 
unstable in the sense that an arbitrarily weak frequency dependence may result in the 
coexistence of certain strategies in the neighbourhood of the ESS. These strategies, 
however, undergo convergent evolution such that ultimately the ESS will be established 
(Geritz et al., 1998).  

In matrix games strategies can coexist. New mutants are neutral against a set of 
resident strategies if the frequencies of pure strategies, averaged over the entire 
population (and thus called the population strategy), correspond to the ESS frequencies 
(Thomas, 1984). Starting with a single resident strategy and with small mutations, 
however, the ESS population strategy will not be reached until the individual strategies 
themselves are near the ESS. Directional evolution will thus proceed until it arrives at 
the neighbourhood of the ESS. Near the ESS, several strategies may form a 
polymorphism that generates the ESS population strategy where further mutations are 
neutral.  

In the generic case of frequency-dependent selection with nonlinear fitness function, 
the notions of ESS and environment-dependent optimality are equivalent: they are the 
general rendering of the Darwinian idea of the “survival of the fittest” . Linear models, 
such as matrix games, represent an important, but mathematically degenerate, special 
case when the ESS can not be considered as an optimum.  
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