277 research outputs found
The Notch pathway controls fibrotic and regenerative repair in the adult heart.
AIMS: In the adult heart, Notch signalling regulates the response to injury. Notch inhibition leads to increased cardiomyocyte apoptosis, and exacerbates the development of cardiac hypertrophy and fibrosis. The role of Notch in the mesenchymal stromal cell fraction, which contains cardiac fibroblasts and cardiac precursor cells, is, however, largely unknown. In the present study, we evaluate, therefore, whether forced activation of the Notch pathway in mesenchymal stromal cells regulates pathological cardiac remodelling.
METHODS AND RESULTS: We generated transgenic mice overexpressing the Notch ligand Jagged1 on the surface of cardiomyocytes to activate Notch signalling in adjacent myocyte and non-myocyte cells. In neonatal transgenic mice, activated Notch sustained cardiac precursor and myocyte proliferation after birth, and led to increased numbers of cardiac myocytes in adult mice. In the adult heart under pressure overload, Notch inhibited the development of cardiomyocyte hypertrophy and transforming growth factor-β/connective tissue growth factor-mediated cardiac fibrosis. Most importantly, Notch activation in the stressed adult heart reduced the proliferation of myofibroblasts and stimulated the expansion of stem cell antigen-1-positive cells, and in particular of Nkx2.5-positive cardiac precursor cells.
CONCLUSIONS: We conclude that Notch is pivotal in the healing process of the injured heart. Specifically, Notch regulates key cellular mechanisms in the mesenchymal stromal cell population, and thereby controls the balance between fibrotic and regenerative repair in the adult heart. Altogether, these findings indicate that Notch represents a unique therapeutic target for inducing regeneration in the adult heart via mobilization of cardiac precursor cells
Jagged1 intracellular domain-mediated inhibition of Notch1 signalling regulates cardiac homeostasis in the postnatal heart.
AIMS: Notch1 signalling in the heart is mainly activated via expression of Jagged1 on the surface of cardiomyocytes. Notch controls cardiomyocyte proliferation and differentiation in the developing heart and regulates cardiac remodelling in the stressed adult heart. Besides canonical Notch receptor activation in signal-receiving cells, Notch ligands can also activate Notch receptor-independent responses in signal-sending cells via release of their intracellular domain. We evaluated therefore the importance of Jagged1 (J1) intracellular domain (ICD)-mediated pathways in the postnatal heart.
METHODS AND RESULTS: In cardiomyocytes, Jagged1 releases J1ICD, which then translocates into the nucleus and down-regulates Notch transcriptional activity. To study the importance of J1ICD in cardiac homeostasis, we generated transgenic mice expressing a tamoxifen-inducible form of J1ICD, specifically in cardiomyocytes. Using this model, we demonstrate that J1ICD-mediated Notch inhibition diminishes proliferation in the neonatal cardiomyocyte population and promotes maturation. In the neonatal heart, a response via Wnt and Akt pathway activation is elicited as an attempt to compensate for the deficit in cardiomyocyte number resulting from J1ICD activation. In the stressed adult heart, J1ICD activation results in a dramatic reduction of the number of Notch signalling cardiomyocytes, blunts the hypertrophic response, and reduces the number of apoptotic cardiomyocytes. Consistently, this occurs concomitantly with a significant down-regulation of the phosphorylation of the Akt effectors ribosomal S6 protein (S6) and eukaryotic initiation factor 4E binding protein1 (4EBP1) controlling protein synthesis.
CONCLUSIONS: Altogether, these data demonstrate the importance of J1ICD in the modulation of physiological and pathological hypertrophy, and reveal the existence of a novel pathway regulating cardiac homeostasis
Red cell distribution width and mortality in acute heart failure patients with preserved and reduced ejection fraction.
Elevated red blood cell distribution width (RDW) is a valid predictor of outcome in acute heart failure (AHF). It is unknown whether elevated RDW remains predictive in AHF patients with either preserved left ventricular ejection fraction (LVEF) ≥50% or reduced LVEF (<50%).
Prospective local registry including 402 consecutive hospitalized AHF patients without acute coronary syndrome or need of intensive care. The primary outcome was all-cause mortality (ACM) at 1 year after admission. Demographic and clinical data derive from admission, echocardiographic examinations (n = 269; 67%) from hospitalization. The Cox proportional hazard model including all patients (P < 0.001) was adjusted for age, gender, and RDW quartiles. Independent predictors of 1-year ACM were cardiogenic shock (HR 2.86; CI: 1.3-6.4), male sex (HR 1.9; CI: 1.2-2.9), high RDW quartile (HR 1.66; CI: 1.02-2.8), chronic HF (HR 1.61; CI: 1.05-2.5), valvular heart disease (HR 1.61; CI: 1.09-2.4), increased diastolic blood pressure (HR 1.02 per mmHg; CI: 1.01-1.03), increasing age (HR 1.04 by year; CI: 1.02-1.07), platelet count (HR 1.002 per G/l; CI: 1.0-1.004), systolic blood pressure (HR 0.99 per mmHg; CI: 0.98-0.99), and weight (HR 0.98 per kg; CI: 0.97-0.99). A total of 114 patients (28.4%) died within the first year; ACM of all patients increased with quartiles of rising RDW (χ(2) 18; P < 0.001). ACM was not different between RDW quartiles of patients with reduced LVEF (n = 153; χ(2) 6.6; P = 0.084). In AHF with LVEF ≥50% the probability of ACM increased with rising RDW (n = 116; χ(2) 9.9; P = 0.0195).
High RDW is associated with increased ACM in AHF patients with preserved but not with reduced LVEF in this study population
The Notch pathway controls fibrotic and regenerative repair in the adult heart
Aims In the adult heart, Notch signalling regulates the response to injury. Notch inhibition leads to increased cardiomyocyte apoptosis, and exacerbates the development of cardiac hypertrophy and fibrosis. The role of Notch in the mesenchymal stromal cell fraction, which contains cardiac fibroblasts and cardiac precursor cells, is, however, largely unknown. In the present study, we evaluate, therefore, whether forced activation of the Notch pathway in mesenchymal stromal cells regulates pathological cardiac remodelling. Methods and results We generated transgenic mice overexpressing the Notch ligand Jagged1 on the surface of cardiomyocytes to activate Notch signalling in adjacent myocyte and non-myocyte cells. In neonatal transgenic mice, activated Notch sustained cardiac precursor and myocyte proliferation after birth, and led to increased numbers of cardiac myocytes in adult mice. In the adult heart under pressure overload, Notch inhibited the development of cardiomyocyte hypertrophy and transforming growth factor-β/connective tissue growth factor-mediated cardiac fibrosis. Most importantly, Notch activation in the stressed adult heart reduced the proliferation of myofibroblasts and stimulated the expansion of stem cell antigen-1-positive cells, and in particular of Nkx2.5-positive cardiac precursor cells. Conclusions We conclude that Notch is pivotal in the healing process of the injured heart. Specifically, Notch regulates key cellular mechanisms in the mesenchymal stromal cell population, and thereby controls the balance between fibrotic and regenerative repair in the adult heart. Altogether, these findings indicate that Notch represents a unique therapeutic target for inducing regeneration in the adult heart via mobilization of cardiac precursor cell
Functional and cardioprotective effects of simultaneous and individual activation of protein kinase A and Epac
BACKGROUND AND PURPOSE: Myocardial cAMP elevation confers cardioprotection against ischaemia/reperfusion (I/R) injury. cAMP activates two independent signalling pathways, PKA and Epac. This study investigated the cardiac effects of activating PKA and/or Epac and their involvement in cardioprotection against I/R. EXPERIMENTAL APPROACH: Hearts from male rats were used either for determination of PKA and PKC activation or perfused in the Langendorff mode for either cardiomyocyte isolation or used to monitor functional activity at basal levels and after 30 min global ischaemia and 2 h reperfusion. Functional recovery and myocardial injury during reperfusion (LDH release and infarct size) were evaluated. Activation of PKA and/or Epac in perfused hearts was induced using cell permeable cAMP analogues in the presence or absence of inhibitors of PKA, Epac and PKC. H9C2 cells and cardiomyocytes were used to assess activation of Epac and effect on Ca(2+) transients. KEY RESULTS: Selective activation of either PKA or Epac was found to trigger a positive inotropic effect, which was considerably enhanced when both pathways were simultaneously activated. Only combined activation of PKA and Epac induced marked cardioprotection against I/R injury. This was accompanied by PKCε activation and repressed by inhibitors of PKA, Epac or PKC. CONCLUSION AND IMPLICATIONS: Simultaneous activation of both PKA and Epac induces an additive inotropic effect and confers optimal and marked cardioprotection against I/R injury. The latter effect is mediated by PKCε activation. This work has introduced a new therapeutic approach and targets to protect the heart against cardiac insults
Jagged1 intracellular domain-mediated inhibition of Notch1 signalling regulates cardiac homeostasis in the postnatal heart
Aims Notch1 signalling in the heart is mainly activated via expression of Jagged1 on the surface of cardiomyocytes. Notch controls cardiomyocyte proliferation and differentiation in the developing heart and regulates cardiac remodelling in the stressed adult heart. Besides canonical Notch receptor activation in signal-receiving cells, Notch ligands can also activate Notch receptor-independent responses in signal-sending cells via release of their intracellular domain. We evaluated therefore the importance of Jagged1 (J1) intracellular domain (ICD)-mediated pathways in the postnatal heart. Methods and results In cardiomyocytes, Jagged1 releases J1ICD, which then translocates into the nucleus and down-regulates Notch transcriptional activity. To study the importance of J1ICD in cardiac homeostasis, we generated transgenic mice expressing a tamoxifen-inducible form of J1ICD, specifically in cardiomyocytes. Using this model, we demonstrate that J1ICD-mediated Notch inhibition diminishes proliferation in the neonatal cardiomyocyte population and promotes maturation. In the neonatal heart, a response via Wnt and Akt pathway activation is elicited as an attempt to compensate for the deficit in cardiomyocyte number resulting from J1ICD activation. In the stressed adult heart, J1ICD activation results in a dramatic reduction of the number of Notch signalling cardiomyocytes, blunts the hypertrophic response, and reduces the number of apoptotic cardiomyocytes. Consistently, this occurs concomitantly with a significant down-regulation of the phosphorylation of the Akt effectors ribosomal S6 protein (S6) and eukaryotic initiation factor 4E binding protein1 (4EBP1) controlling protein synthesis. Conclusions Altogether, these data demonstrate the importance of J1ICD in the modulation of physiological and pathological hypertrophy, and reveal the existence of a novel pathway regulating cardiac homeostasi
Redox control of sulfur degassing in silicic magmas
International audienceExplosive eruptions involve mainly silicic magmas in which sulfur solubility and diffusivity are low. This inhibits sulfur exsolution during magma uprise as compared to more mafic magmas such as basalts. Silicic magmas can nevertheless liberate large quantities of sulfur as shown by the monitoring of SO2 in recent explosive silicic eruptions in arc settings, which invariably have displayed an excess of sulfur relative to that calculated from melt degassing. If this excess sulfur is stored in a fluid phase, it implies a strong preference of sulfur for the fluid over the melt under oxidized conditions, with fluid/melt partition coefficients varying between 50 and 2612, depending on melt composition. Experimentally determined sulfur partition coefficients for a dacite bulk composition confirm this trend and show that in volcanic eruptions displaying excess gaseous sulfur, the magmas were probably fluid-saturated at depth. The experiments show that in more reduced silicic magmas, those coexisting only with pyrrhotite, the partition coefficient decreases dramatically to values around 1, because pyrrhotite locks up nearly all the sulfur of the magma. Reevaluation of the sulfur yields of some major historical eruptions in the light of these results shows that for oxidized magmas, the presence of 1-5 wt % fluid may indeed account for the differences observed between the petrologic estimate of the sulfur yield and that constrained from ice core data. Explosive eruptions of very large magnitude but involving reduced and cool silicic magmas, such as the Toba or the Bishop events, release only minor amounts of sulfur and could have consequently negligible long-term (years to centuries) atmospherical effects. This redox control on sulfur release diminishes as the melt composition becomes less silicic and as temperature increases, because both factors favor more efficient melt sulfur degassing owing to the increased diffusivity of sulfur in silicate melts under such conditions
The evolution of the Izu Bonin - Mariana volcanic arcs (NW Pacific) in terms of major element chemistry
[1] New and published analyses of major element oxides (SiO2, TiO2, Al2O3, FeO*, MnO, MgO, CaO, K2O, Na2O and P2O5) from the central Izu Bonin and Mariana arcs (IBM) were compiled in order to investigate the evolution of the IBM in terms of major elements since arc inception at ∼49 million years ago. The database comprises ∼3500 volcanic glasses of distal tephra fallout and ∼500 lava samples, ranging from the Quaternary to mid-Eocene in age. The data were corrected to 4 wt% MgO in order to display the highly resolved temporal trends. These trends show that the IBM major elements have always been “arc-like” and clearly distinct from N-MORB. Significant temporal variations of some major element oxides are apparent. The largest variations are displayed by K4.0. The data support a model wherein the K2O variability is caused by the addition of slab component with strongly differing K2O contents to a fairly depleted subarc mantle; variable extents of melting, or mantle heterogeneity, appear to play a negligible role. The other major element oxides are controlled by the composition and processes of the subarc mantle wedge. The transition from the boninitic and tholeiitic magmatism of the Eocene and Oligocene to the exclusively tholeiitic magmatism of the Neogene IBM is proposed to reflect a change in the composition of the subarc mantle wedge. The early boninitic magmas originate from an ultra-depleted subarc mantle, that is residual to either the melting of E-MORB mantle, or of subcontinental lithospheric mantle. During the Eocene and Oligocene, this residual mantle is gradually replaced by Indian MORB mantle advected from the backarc regions. The Indian MORB mantle is more radiogenic in Nd isotope ratios but also more fertile with respect to major and trace elements. Therefore the Neogene tholeiites have higher Al2O3 and TiO2 contents and lower mg# numbers at given SiO2 content. After the subarc mantle replacement was complete in the late Oligocene or early Miocene, the Neogene IBM entered a “steady state” that is characterized by the continuous advection of Indian MORB mantle from the reararc, which is fluxed by fluids and melt components from slab. The thickness of the IBM crust must have grown with time, but any effects of crustal thickening on the major element chemistry of the IBM magmas appear to be minor relative to the compositional changes that are related to source composition. Therefore next to the processes of melting, the composition of the mantle sources must play a major role in creating substantiative heterogeneities in the major element chemistry of the arc crust
- …
