3,013 research outputs found

    Godel-type Metrics in Various Dimensions II: Inclusion of a Dilaton Field

    Full text link
    This is the continuation of an earlier work where Godel-type metrics were defined and used for producing new solutions in various dimensions. Here a simplifying technical assumption is relaxed which, among other things, basically amounts to introducing a dilaton field to the models considered. It is explicitly shown that the conformally transformed Godel-type metrics can be used in solving a rather general class of Einstein-Maxwell-dilaton-3-form field theories in D >= 6 dimensions. All field equations can be reduced to a simple "Maxwell equation" in the relevant (D-1)-dimensional Riemannian background due to a neat construction that relates the matter fields. These tools are then used in obtaining exact solutions to the bosonic parts of various supergravity theories. It is shown that there is a wide range of suitable backgrounds that can be used in producing solutions. For the specific case of (D-1)-dimensional trivially flat Riemannian backgrounds, the D-dimensional generalizations of the well known Majumdar-Papapetrou metrics of general relativity arise naturally.Comment: REVTeX4, 17 pp., no figures, a few clarifying remarks added and grammatical errors correcte

    Hydrodynamic type integrable equations on a segment and a half-line

    Get PDF
    The concept of integrable boundary conditions is applied to hydrodynamic type systems. Examples of such boundary conditions for dispersionless Toda systems are obtained. The close relation of integrable boundary conditions with integrable reductions of multi-field systems is observed. The problem of consistency of boundary conditions with the Hamiltonian formulation is discussed. Examples of Hamiltonian integrable hydrodynamic type systems on a segment and a semi-line are presented

    Gauss-Bonnet Gravity with Scalar Field in Four Dimensions

    Get PDF
    We give all exact solutions of the Einstein-Gauss-Bonnet Field Equations coupled with a scalar field in four dimensions under certain assumptions.Comment: Latex file, 7 page

    G\"odel Type Metrics in Three Dimensions

    Get PDF
    We show that the G{\" o}del type Metrics in three dimensions with arbitrary two dimensional background space satisfy the Einstein-perfect fluid field equations. There exists only one first order partial differential equation satisfied by the components of fluid's velocity vector field. We then show that the same metrics solve the field equations of the topologically massive gravity where the two dimensional background geometry is a space of constant negative Gaussian curvature. We discuss the possibility that the G{\" o}del Type Metrics to solve the Ricci and Cotton flow equations. When the vector field uμu^{\mu} is a Killing vector field we finally show that the stationary G{\" o}del Type Metrics solve the field equations of the most possible gravitational field equations where the interaction lagrangian is an arbitrary function of the electromagnetic field and the curvature tensors.Comment: 17 page

    Closed timelike curves and geodesics of Godel-type metrics

    Get PDF
    It is shown explicitly that when the characteristic vector field that defines a Godel-type metric is also a Killing vector, there always exist closed timelike or null curves in spacetimes described by such a metric. For these geometries, the geodesic curves are also shown to be characterized by a lower dimensional Lorentz force equation for a charged point particle in the relevant Riemannian background. Moreover, two explicit examples are given for which timelike and null geodesics can never be closed.Comment: REVTeX 4, 12 pages, no figures; the Introduction has been rewritten, some minor mistakes corrected, many references adde

    Accelerated Born-Infeld Metrics in Kerr-Schild Geometry

    Get PDF
    We consider Einstein Born-Infeld theory with a null fluid in Kerr-Schild Geometry. We find accelerated charge solutions of this theory. Our solutions reduce to the Plebanski solution when the acceleration vanishes and to the Bonnor-Vaidya solution as the Born-Infeld parameter b goes to infinity. We also give the explicit form of the energy flux formula due to the acceleration of the charged sources.Comment: Latex file (12 pp

    Killing Vector Fields in Three Dimensions: A Method to Solve Massive Gravity Field Equations

    Get PDF
    Killing vector fields in three dimensions play important role in the construction of the related spacetime geometry. In this work we show that when a three dimensional geometry admits a Killing vector field then the Ricci tensor of the geometry is determined in terms of the Killing vector field and its scalars. In this way we can generate all products and covariant derivatives at any order of the ricci tensor. Using this property we give ways of solving the field equations of Topologically Massive Gravity (TMG) and New Massive Gravity (NMG) introduced recently. In particular when the scalars of the Killing vector field (timelike, spacelike and null cases) are constants then all three dimensional symmetric tensors of the geometry, the ricci and einstein tensors, their covariant derivatives at all orders, their products of all orders are completely determined by the Killing vector field and the metric. Hence the corresponding three dimensional metrics are strong candidates of solving all higher derivative gravitational field equations in three dimensions.Comment: 25 pages, some changes made and some references added, to be published in Classical and Quantum Gravit

    Fragmentation of Fractal Random Structures

    Get PDF
    We analyze the fragmentation behavior of random clusters on the lattice under a process where bonds between neighboring sites are successively broken. Modeling such structures by configurations of a generalized Potts or random-cluster model allows us to discuss a wide range of systems with fractal properties including trees as well as dense clusters. We present exact results for the densities of fragmenting edges and the distribution of fragment sizes for critical clusters in two dimensions. Dynamical fragmentation with a size cutoff leads to broad distributions of fragment sizes. The resulting power laws are shown to encode characteristic fingerprints of the fragmented objects.Comment: Thoroughly revised version. Final version published in Physical Review Letter

    Quantum optical coherence can survive photon losses: a continuous-variable quantum erasure correcting code

    Get PDF
    A fundamental requirement for enabling fault-tolerant quantum information processing is an efficient quantum error-correcting code (QECC) that robustly protects the involved fragile quantum states from their environment. Just as classical error-correcting codes are indispensible in today's information technologies, it is believed that QECC will play a similarly crucial role in tomorrow's quantum information systems. Here, we report on the first experimental demonstration of a quantum erasure-correcting code that overcomes the devastating effect of photon losses. Whereas {\it errors} translate, in an information theoretic language, the noise affecting a transmission line, {\it erasures} correspond to the in-line probabilistic loss of photons. Our quantum code protects a four-mode entangled mesoscopic state of light against erasures, and its associated encoding and decoding operations only require linear optics and Gaussian resources. Since in-line attenuation is generally the strongest limitation to quantum communication, much more than noise, such an erasure-correcting code provides a new tool for establishing quantum optical coherence over longer distances. We investigate two approaches for circumventing in-line losses using this code, and demonstrate that both approaches exhibit transmission fidelities beyond what is possible by classical means.Comment: 5 pages, 4 figure

    Exact solution of Schrodinger equation for Pseudoharmonic potential

    Get PDF
    Exact solution of Schrodinger equation for the pseudoharmonic potential is obtained for an arbitrary angular momentum. The energy eigenvalues and corresponding eigenfunctions are calculated by Nikiforov-Uvarov method. Wavefunctions are expressed in terms of Jacobi polynomials. The energy eigenvalues are calculated numerically for some values of l and n with n<5 for some diatomic molecules.Comment: 10 page
    corecore