8 research outputs found

    The Trans-Ancestral Genomic Architecture of Glycemic Traits

    No full text
    Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P \u3c 5 × 10−8), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution

    GWAS of random glucose in 476,326 individuals provide insights into diabetes pathophysiology, complications and treatment stratification

    Get PDF
    This is the final version. Available on open access from Nature Research via the DOI in this recordData availability: Meta-analysis summary statistics for the GWAS presented in this manuscript are available on the MAGIC website (magicinvestigators.org) and through the NHGRI-EBI GWAS Catalog (https://www.ebi.ac.uk/gwas/downloads/summary-statistics, GCP ID: GCP000666; with study accession codes for Europeans-only meta-analysis: GCST90271557; cross-ancestry meta-analysis: GCST90271558; and sex-dimorphic meta-analysis: GCST90271559). UK Biobank individual-level data can be obtained through a data access application available at https://www.ukbiobank.ac.uk/. In this study, we made use of data made available by: 1000 Genomes project (https://www.genome.gov/27528684/1000-genomes-project); SNPsnap (https://data.broadinstitute.org/mpg/snpsnap/index.html); Tabula Muris (https://www.czbiohub.org/tabula-muris/); GTEx Consortium (https://gtexportal.org/home/); microbiome GWAS (https://mibiogen.gcc.rug.nl/); Human Gut Microbiome Atlas (https://www.microbiomeatlas.org); eQTLGen Consortium (https://www.eqtlgen.org/); TIGER expression data (http://tiger.bsc.es/) and LDHub database (http://ldsc.broadinstitute.org/ldhub/).Conventional measurements of fasting and postprandial blood glucose levels investigated in genome-wide association studies (GWAS) cannot capture the effects of DNA variability on ‘around the clock’ glucoregulatory processes. Here we show that GWAS meta-analysis of glucose measurements under nonstandardized conditions (random glucose (RG)) in 476,326 individuals of diverse ancestries and without diabetes enables locus discovery and innovative pathophysiological observations. We discovered 120 RG loci represented by 150 distinct signals, including 13 with sex-dimorphic effects, two cross-ancestry and seven rare frequency signals. Of these, 44 loci are new for glycemic traits. Regulatory, glycosylation and metagenomic annotations highlight ileum and colon tissues, indicating an underappreciated role of the gastrointestinal tract in controlling blood glucose. Functional follow-up and molecular dynamics simulations of lower frequency coding variants in glucagon-like peptide-1 receptor (GLP1R), a type 2 diabetes treatment target, reveal that optimal selection of GLP-1R agonist therapy will benefit from tailored genetic stratification. We also provide evidence from Mendelian randomization that lung function is modulated by blood glucose and that pulmonary dysfunction is a diabetes complication. Our investigation yields new insights into the biology of glucose regulation, diabetes complications and pathways for treatment stratification

    The trans-ancestral genomic architecture of glycemic traits

    Get PDF
    Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 x 10(-8)), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution. A trans-ancestry meta-analysis of GWAS of glycemic traits in up to 281,416 individuals identifies 99 novel loci, of which one quarter was found due to the multi-ancestry approach, which also improves fine-mapping of credible variant sets.Peer reviewe

    Genome-wide association study and functional characterization identifies candidate genes for insulin-stimulated glucose uptake.

    No full text
    This is the author accepted manuscript. The final version is available from Nature Research via the DOI in this record Data Availability: GWAS summary statistics will be made available on the MAGIC Investigators Website (https://magicinvestigators.org/downloads/) and GWAS catalog (https://www.ebi.ac.uk/gwas/home): GCST90267567, GCST90267568, GCST90267569, GCST90267570, GCST90267571, GCST90267572, GCST90267573, GCST90267574, GCST90267575, GCST90267576, GCST90267577, GCST90267578.Data from the Fenland cohort can be requested by bona fide researchers for specified scientific purposes via the study website (https://www.mrc-epid.cam.ac.uk/research/studies/fenland/information-for-researchers/). Data will either be shared through an institutional data-sharing agreement or arrangements will be made for analyses to be conducted remotely without the necessity for data transfer.All data used in genetic risk score association analyses are available from the UK Biobank upon application (https://www.ukbiobank.ac.uk). All analyses in the UK Biobank in this manuscript were conducted under application 44448. Further details about the RISC study and data availability can be found here: http://www.egir.org/egirrisc/. The Genotype-Tissue Expression (GTEx) Project was supported by the Common Fund of the Office of the Director of the National Institutes of Health, and by NCI, NHGRI, NHLBI, NIDA, NIMH and NINDS. The data used for the analyses described in this manuscript can be obtained from the GTEx Portal (https://www.gtexportal.org/home/) and dbGaP accession number phs000424.v8.p2. Genome regulatory annotations from ENCODE (https://www.encodeproject.org/) and Roadmap Epigenomics Consortium (https://egg2.wustl.edu/roadmap/web_portal/) were explored via UCSC Genome Browser (http://genome.ucsc.edu). Published differentiated 3T3-L1 RNA-sequencing data used in this study are available from GEO accession GSE129957 (https://www.ncbi.nlm.nih.gov/geo/). Source data are provided with this paper.Code availability: No previously unreported custom code or algorithm was used to generate results. The following software and packages were used for data analysis: METAL v.2011-03-25 (http://csg.sph.umich.edu/abecasis/Metal/download/), random-metal v.2017-07-24 (https://github.com/explodecomputer/random-metal), linkage disequilibrium score regression v.1.0.1 (https://github.com/bulik/ldsc), R v.3.6.0 and v.4.0.3 (https://www.r-project.org/). R packages coloc v.5.1.0 (https://cran.r-project.org/web/packages/coloc/). Hyprcoloc v.1.0 (https://github.com/jrs95/hyprcoloc). GCTA 1.26.0 (https://yanglab.westlake.edu.cn/software/gcta/#Overview). EasyQC v.17.8 (https://www.uni-regensburg.de/medizin/epidemiologie-praeventivmedizin/genetische-epidemiologie/software/index.html). Associated code and scripts used in this manuscript are available on GitHub: https://github.com/MRC-Epid/GWAS_postchallenge_insulin (https://zenodo.org/record/7805583#.ZC7C_exBxhE).Distinct tissue-specific mechanisms mediate insulin action in fasting and postprandial states. Previous genetic studies have largely focused on insulin resistance in the fasting state, where hepatic insulin action dominates. Here we studied genetic variants influencing insulin levels measured 2 h after a glucose challenge in >55,000 participants from three ancestry groups. We identified ten new loci (P < 5 × 10-8) not previously associated with postchallenge insulin resistance, eight of which were shown to share their genetic architecture with type 2 diabetes in colocalization analyses. We investigated candidate genes at a subset of associated loci in cultured cells and identified nine candidate genes newly implicated in the expression or trafficking of GLUT4, the key glucose transporter in postprandial glucose uptake in muscle and fat. By focusing on postprandial insulin resistance, we highlighted the mechanisms of action at type 2 diabetes loci that are not adequately captured by studies of fasting glycemic traits.Swedish Research CouncilNovo Nordisk FoundationNational Institute of HealthNational Institute of HealthNational Institute of HealthNational Health Research Institutes, TaiwanNational Health Research Institutes, TaiwanNational Health Research Institutes, TaiwanNational Science Council, TaiwanNational Science Council, TaiwanNational Science Council, TaiwanNational Science Council, TaiwanTaichung Veterans General Hospital, TaiwanTaichung Veterans General Hospital, TaiwanTaichung Veterans General Hospital, TaiwanTaichung Veterans General Hospital, TaiwanTaichung Veterans General Hospital, TaiwanTaichung Veterans General Hospital, TaiwanTaichung Veterans General Hospital, TaiwanTaichung Veterans General Hospital, TaiwanTaichung Veterans General Hospital, TaiwanTaichung Veterans General Hospital, TaiwanTaichung Veterans General Hospital, TaiwanTaichung Veterans General Hospital, TaiwanTaichung Veterans General Hospital, TaiwanTaichung Veterans General Hospital, TaiwanTaichung Veterans General Hospital, TaiwanTaichung Veterans General Hospital, TaiwanTaichung Veterans General Hospital, TaiwanNational Institute of HealthNational Institute of HealthSwedish Research CouncilSwedish Research CouncilUK Research and Innovation (UKRI)Medical Research CouncilWellcome Trus
    corecore