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The Trans-Ancestral Genomic Architecture of Glycemic Traits
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Abstract

Glycemic traits are used to diagnose and monitor type 2 diabetes, and cardiometabolic health. To 

date, most genetic studies of glycemic traits have focused on individuals of European ancestry. 

Here, we aggregated genome-wide association studies in up to 281,416 individuals without 

diabetes (30% non-European ancestry) with fasting glucose, 2h-glucose post-challenge, glycated 

hemoglobin, and fasting insulin data. Trans-ancestry and single-ancestry meta-analyses identified 

242 loci (99 novel; P<5x10-8), 80% with no significant evidence of between-ancestry 

heterogeneity. Analyses restricted to European ancestry individuals with equivalent sample size 

would have led to 24 fewer new loci. Compared to single-ancestry, equivalent sized trans-ancestry 

fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 

37.5%. Genomic feature, gene-expression and gene-set analyses revealed distinct biological 

signatures for each trait, highlighting different underlying biological pathways. Our results 

increase understanding of diabetes pathophysiology by use of trans-ancestry studies for improved 

power and resolution.

Fasting glucose (FG), 2h-glucose post-challenge (2hGlu), and glycated hemoglobin 

(HbA1c) are glycemic traits used to diagnose diabetes1. In addition, HbA1c is the most 

commonly used biomarker to monitor glucose control in patients with diabetes. Fasting 

insulin (FI) reflects a combination of insulin secretion and insulin resistance, both 

components of type 2 diabetes (T2D), and insulin clearance2. Collectively, all four glycemic 

traits are useful to better understand T2D pathophysiology3–5 and cardiometabolic 

outcomes6.

To date, genome-wide association studies (GWAS) and analysis of Metabochip and exome 

arrays have identified >120 loci associated with glycemic traits in individuals without 

diabetes7–15. However, despite considerable differences in the prevalence of T2D risk factors 

across ancestries16–18, most glycemic trait GWAS have insufficient representation of 

individuals of non-European ancestry. Additionally, they have limited resolution for fine-

mapping of causal variants and for effector transcript identification. Here, we present large-

scale trans-ancestry meta-analyses of GWAS for four glycemic traits in individuals without 

diabetes. We aimed to identify additional glycemic trait-associated loci; investigate the 

portability of loci and genetic scores across ancestries; leverage differences in effect allele 

frequency (EAF), effect size, and linkage disequilibrium (LD) across diverse populations to 

conduct fine-mapping and aid causal variant/effector transcript identification; and compare 

founder of Zoe Global Ltd. J. Tuomilehto receives research support from Bayer, is a consultant for Eli Lily, and holds stock in Orion 
Pharma and Aktivolabs Ltd.
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the genetic architecture of glycemic traits to further identify the cell-types and target tissues 

most influenced by these traits which inform T2D pathophysiology.

Results

Study design and definitions

To identify loci associated with glycemic traits FG, 2hGlu, FI, and HbA1c, we aggregated 

GWAS in up to 281,416 individuals without diabetes, ~30% of whom were of non-European 

ancestry [13% East Asian, 7% Hispanic, 6% African-American, 3% South Asian, and 2% 

sub-Saharan African (Ugandan data only available for HbA1c)]. Each cohort imputed data to 

the 1000 Genomes Project reference panel19 (phase 1 v3, March 2012, or later; Methods, 

Supplementary Table 1, Extended Data Figure 1, Supplementary Note). Up to ~49.3 million 

variants were directly genotyped or imputed, with between 38.6 million (2hGlu) and 43.5 

million variants (HbA1c) available for analysis after exclusions based on minor allele count 

(MAC < 3) and imputation quality (imputation r2 or INFO score <0.40) in each cohort. FG, 

2hGlu and FI analyses were adjusted for BMI15 but for simplicity they are abbreviated as 

FG, 2hGlu and FI (Methods).

We first performed trait-specific fixed-effect meta-analyses within each ancestry using 

METAL20 (Methods). We defined “single-ancestry lead” variants as the strongest trait-

associated variants (P<5x10-8) within a 1Mb region in an ancestry (Table 1). Within each 

ancestry and each autosome, we used approximate conditional analyses in GCTA21,22, to 

identify “single-ancestry index variants” (P<5x10-8) that exert conditionally distinct effects 

on the trait (Table 1, Methods, Supplementary Note). This approach identified 124 FG, 15 

2hGlu, 48 FI and 139 HbA1c variants that were significant in at least one ancestry 

(Supplementary Table 2).

Next, we conducted trait-specific trans-ancestry meta-analyses using MANTRA (Methods, 

Supplementary Table 1, Supplementary Note) to identify genome-wide significant “trans-

ancestry lead variants”, defined as the most significant trait-associated variant across all 

ancestries (log10 Bayes Factor [BF] >6, equivalent to P<5x10-8)23 (Table 1, Methods). Here, 

we present trans-ancestry results as our primary results (Supplementary Table 2).

Causal variants are expected to affect related glycemic traits and may be shared across 

ancestries. Therefore, we combined all single-ancestry lead variants, single-ancestry index 

variants, and/or trans-ancestry lead variants (for any trait) mapping within 500Kb of each 

other, into a single “trans-ancestry locus” bounded by 500Kb flanking sequences (Table 1, 

Extended Data Figure 2). As defined, a trans-ancestry locus may contain multiple causal 

variants affecting one or more glycemic traits, exerting their effect in one or more ancestry.

Glycemic trait locus discovery

Trans-ancestry meta-analyses identified 235 trans-ancestry loci, of which 59 contained lead 

variants for more than one trait. In addition, we identified seven “single-ancestry loci” that 

did not contain any trans-ancestry lead variants (Table 1, Supplementary Table 2). Of the 

242 combined loci, 99 (including 6 of the 7 single-ancestry) had not been previously 

associated with any of the four glycemic traits or with T2D, at the time of analysis (Figure 1, 
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Supplementary Table 3, Supplementary note). However, based on recent East Asian and 

trans-ancestry T2D GWAS meta-analyses23–27, the lead variants at 27/99 novel glycemic 

trait loci have strong evidence of association with T2D (P<10-4; 13 loci with P<5x10-8), 

suggesting they are also important in T2D pathophysiology (Supplementary Tables 2 and 4).

Of the six single-ancestry novel loci, three were unique to non-European ancestry 

individuals (Supplementary Table 3). An African American association for FI (lead variant 

rs12056334) near LOC100128993 (an uncharacterized RNA gene; Supplementary Note), an 

African American association for FG (lead variant rs61909476) near ETS1 and a Hispanic 

association for FG (lead variant rs12315677) within PIK3C2G (Supplementary Table 3). 

Despite broadly similar EAF across ancestries, rs61909476 was significantly associated with 

FG only in African American individuals (EAF ~7%, b=0.0812 mmol/l, SE=0.01 mmol/l, 

P=3.9×10-8 vs EAF 10-17%, b=0-0.002 mmol/l, se=0.003-0.017 mmol/l, P=0.44-0.95 in all 

other ancestries, Supplementary table 2, Supplementary note). The nearest gene, ETS1, 

encodes a transcription factor that is expressed in mouse pancreatic β-cells, and its 

overexpression decreases glucose-stimulated insulin secretion in mouse islets28. Located 

within the PIK3C2G gene, rs12315677 has an 84% EAF in Hispanic (70-94% in other 

ancestries) and is significantly associated with FG in this ancestry alone (b=0.0387 mmol/l, 

SE=0.0075 mmol/l, P=4.0×10-8 vs b=-0.0128-0.010 mmol/l, SE=0.003-0.018 mmol/l, 

P=0.14-0.76 in all other ancestries, Supplementary note). In mice, deletion of Pik3c2g leads 

to a phenotype characterized by reduced glycogen storage in the liver, hyperlipidemia, 

adiposity, and insulin resistance with increasing age, or after a high fat diet29. Instances of 

similar EAFs but differing effect sizes between populations, could be due to genotype-by-

environment or other epistatic effects. Alternatively, lower imputation accuracy in smaller 

sample sizes could deflate effect sizes, although imputation quality for these variants was 

good (average r2=0.81). Finally, the variants detected here may be in LD with ancestry-

specific causal variants not interrogated here that differ in frequency across ancestries. 

However, we could not find evidence of rarer alleles in the cognate populations from the 

1000G project (Supplementary Table 5). The final three single-ancestry loci were identified 

in individuals of European ancestry (Supplementary note).

Next, by rescaling the standard errors of allelic effect sizes to artificially boost the sample 

size of the European meta-analysis to match that of trans-ancestry meta-analysis, we 

determined that 21 of the novel trans-ancestry loci would not have been discovered with an 

equivalent sample size comprised exclusively of European ancestry individuals 

(Supplementary note). Their discovery was due to the higher EAF and/or larger effect size in 

non-European ancestry populations. In particular, two loci (near LINC00885 and MIR4278) 

contain East Asian and African American single-ancestry lead variants, respectively, 

suggesting that these specific ancestries may be driving the trans-ancestry discovery 

(Supplementary Tables 2-3). Combined with the three single-ancestry non-European loci 

described above, our results show that 24% (24/99) of novel loci were discovered due to the 

contribution of non-European ancestry participants, strengthening the argument for 

expanding genetic studies in diverse populations.
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Allelic architecture of glycemic traits

Single-ancestry and trans-ancestry results combined increased the number of established loci 

for FG to 102 (182 signals, 53 novel loci), FI to 66 (95 signals, 49 novel loci), 2hGlu to 21 

(28 signals, 11 novel loci), and HbA1c to 127 (218 signals, 62 novel loci) (Supplementary 

Table 2), with significant overlap across traits (Extended Data Figure 3). We also detected 

(P<0.05 or log10BF>0) the vast majority (~90%) of previously established glycemic signals, 

70-88% of which attained genome-wide significance (Supplementary Note, Supplementary 

Table 6). Given that analyses for FG, FI, and 2hGlu were performed adjusted for BMI, we 

confirmed that collider bias did not influence >98% of signals discovered (Supplementary 

note)31. As expected, given the greater power due to increased sample sizes, new association 

signals tended to have smaller effect sizes and/or EAFs in European ancestry individuals 

compared to established signals (Extended Data Figure 4).

Characterization of lead variants across ancestries

To better understand the transferability of trans-ancestry lead variants across ancestries, we 

investigated the pairwise EAF correlation and the pairwise summarized heterogeneity of 

effect sizes between ancestries32 (Methods, Supplementary Note). Consistent with 

population history and evolution, these results demonstrated considerable EAF correlation 

(ρ2>0.70) between European and Hispanic, European and South Asian, and Hispanic and 

South Asian populations, consistent across all four traits, and between African Americans 

and Ugandans for HbA1c (Extended Data Figure 5). Despite significant EAF correlations, 

some pairwise comparisons exhibited strong evidence for effect size heterogeneity between 

ancestries that was less consistent between traits (Extended Data Figure 5). However, 

sensitivity analyses demonstrated that, across all comparisons, the evidence for 

heterogeneity is driven by a small number of variants, with between 81.5% (for HbA1c) and 

85.7% of trans-ancestry lead variants (for FG) showing no evidence for trans-ancestry 

heterogeneity (P>0.05) (Supplementary Note).

Trait variance explained by associated loci

The trait variance explained by genome-wide significant loci was assessed using the single-

ancestry variants only or a combination of single-ancestry and trans-ancestry variants 

(Supplementary Table 7) with betas extracted from the relevant single-ancestry meta-

analysis results (Methods). The variance explained was assessed by linear regression in a 

subset of the contributing cohorts (Methods, Supplementary Tables 8-11). In general, the 

approach that explained the most variance was to begin with the trans-ancestry lead variants 

that had P<0.1 in the relevant single-ancestry meta-analysis, then add in all single-ancestry 

variants that were not in LD with the trans-ancestry variants (LD r2<0.1) (List C, 

Supplementary Tables 8-11, Figure 2). Using this approach, the mean variance in the trait 

distribution explained was between 0.7% (2hGlu in EUR) and 6% (HbA1c in AA). The 

European-based estimates explained more variance relative to previous estimates of 2.8% for 

FG and 1.7% for HbA1c33 (Supplementary Note).
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Transferability of EUR ancestry-derived polygenic scores

To investigate the transferability of polygenic scores across ancestries we used the PRS-

CSauto software34 to first build polygenic scores for each glycemic trait based on European 

ancestry data. However, the training set for 2hGlu was too small so this trait was excluded. 

To build the polygenic scores (PGS), for each trait we first removed five of the largest 

European cohorts from the European ancestry meta-analysis. These five cohorts were meta-

analyzed and used as our European ancestry test dataset, for each trait. The remaining 

European ancestry cohorts were also meta-analyzed and used as the training dataset, from 

which we derived a PGS for each trait (Methods). We used PRS-CSauto to revise the effect 

size estimates for the variants in the score (obtained from the training European datasets) 

based on the LD of the test population. PRS-CSauto does not have LD reference panels for 

South Asian or Hispanic ancestry and as such we were unable to test the transferability of 

the PGS into those populations. The “gtx” package35 (Methods) was used to obtain the R2 

for each test population (Figure 3, Supplementary Table 12). Consistent with other complex 

traits36, the European ancestry-derived PGS had greater predictive power into test data of 

European ancestry than other ancestry groups.

Fine-mapping

We fine-mapped, 231 trans-ancestry and six single-ancestry autosomal loci (Supplementary 

Table 2, Supplementary note). Using FINEMAP with ancestry-specific LD and an average 

LD matrix across ancestries, we conducted fine-mapping both within (161 loci with single-

ancestry lead variants) and across ancestries (231 loci) for each trait (Methods). Because 59 

of the 231 trans-ancestry loci were associated with more than one trait, we conducted trans-

ancestry fine-mapping for a total of 305 locus-trait associations. Of these 305 locus-trait 

combinations, FINEMAP estimated the presence of a single causal variant at 186 loci 

(61%), while multiple distinct causal variants were implicated at 126 loci (39%), for a total 

of 464 causal variants (Figure 4A).

Credible sets for causal variants—At each locus, we next constructed credible sets 

(CS) for each causal variant that account for >=99% of the posterior probability of 

association (PPA). We identified 21 locus-trait associations (at 19 loci) for which the 99% 

CS included a single variant, and we highlight four examples (Methods, Supplementary 

Note, Figure 4B, Supplementary Table 13).

At MTNR1B and SIX3 we identified, respectively, rs10830963 (PPA>0.999, for both 

HbA1c and FG) and rs12712928 (PPA=0.997, for FG) as the likely causal variants. At both 

loci previous studies confirm these variants affect transcriptional activity37,38,39 

(Supplementary note). At a locus near PFKM associated with HbA1c, trans-ancestry fine-

mapping identified rs12819124 (PPA>0.999) as the likely causal variant. This variant has 

been previously associated with mean corpuscular hemoglobin40, suggesting an effect on 

HbA1c via the red blood cell (RBC, Supplementary note). At HBB, we identifed rs334 

(PPA>0.999; Glu7Val) as the likely causal variant associated with HbA1c. rs334 is a causal 

variant of sickle cell anemia41, previously associated with urinary albumin-to-creatinine 

ratio in Caribbean Hispanic individuals42, severe malaria in a Tanzanian study population43, 

hematocrit and mean corpuscular volume in Hispanic/Latino populations44, and RBC 
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distribution in Ugandan individuals45, all pointing to a variant effect on HbA1c via non-

glycemic pathways.

The remaining locus-trait associations with a single variant in the 99% CS (Supplementary 

Table 13) point to variants that could be prioritized for functional follow-up to elucidate 

impact on glycemic trait physiology.

At an additional 156 locus-trait associations trans-ancestry fine-mapping identified 99% CS 

with 50 or fewer variants (Figure 4B, Supplementary Table 13). Consistent with the potential 

for >1 causal variant in a locus, 74 locus-trait associations contained 88 variants with 

PPA>0.90 that are strong candidate causal variants (Supplementary Table 14). For example, 

10 are coding variants including several missense such as the HBB Glu7Val mentioned 

above, GCKR Leu446Pro, RREB1 Asp1771Asn, G6PC2 Pro324Ser, GLP1R Ala316Thr, 

and TMPRSS6 Val736Ala, each of which have been proposed or shown to affect gene 

function12,46–50. We additionally identified AMPD3 Val311Leu (PPA=0.989) and TMC6 
Trp125Arg (PPA>0.999) variants associated with HbA1c which were previously detected in 

an exome array analysis but had not been fine-mapped with certainty due to the absence of 

backbone GWAS data30. Our fine-mapping now suggest these variants are likely causal and 

identify their cognate genes as effector transcripts.

Finally, we evaluated the resolution obtained in the trans-ancestry versus single-ancestry 

fine-mapping (Methods, Supplementary Note). We compared the number of variants in 99% 

CS across 98 locus-trait associations which, as suggested by FINEMAP, had a single causal 

variant in both trans-ancestry and single-ancestry analyses. Fine-mapping within and across 

ancestries was conducted using the same set of variants. At 8 of 98 locus-trait associations 

single-ancestry fine-mapping identified a single variant in the CS. In addition, at 72 of the 98 

locus-trait associations, the number of variants in the 99% CS was smaller in the trans-

ancestry fine-mapping (Figure 4C), which likely reflects the larger sample size and 

differences in LD structure, EAFs, and effect sizes across diverse populations. To quantify 

the estimated improvement in fine-mapping resolution attributable to the multi-ancestry 

GWAS, we then compared 99% CS sizes from the trans-ancestry fine-mapping to single-

ancestry-specific data emulating the same total sample size by rescaling the standard errors 

(Methods). Of the 72 locus-trait associations with estimated improved fine-mapping in trans-

ancestry analysis, resolution at 38 (53%) was improved because of the larger sample size in 

the trans-ancestry fine-mapping analysis (Figure 4C), and this estimated improved resolution 

would likely have been obtained in a European-only fine-mapping effort with equivalent 

sample size. However, at 34 (47%) loci, the inclusion of samples from multiple diverse 

populations yielded the estimated improved resolution. On average, ancestry differences led 

to a reduction in the median number of variants in the 99% CS from 24 to 15 variants 

(37.5% median reduction; Figure 4C), demonstrating the value of conducting fine-mapping 

across ancestries.

HbA1c Signal Classification

HbA1c-associated variants can exert their effects on HbA1c levels through both glycemic 

and non-glycemic pathways 7,51 and their correct classification can affect T2D diagnostic 

accuracy7,52. Using prior association results for other glycemic, RBC, and iron traits, and a 
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fuzzy clustering approach we classified variants into their most likely mode of action 

(Methods, Supplementary note). Of the 218 HbA1c-associated variants, 27 (12%) could not 

be characterized due to missing data and 23 (11%) could not be classified into a “known” 

class (Supplementary note). The remaining signals were classified as principally: a) 

glycemic (n=53; 24%), b) affecting iron levels/metabolism (n=12; 6%), or c) RBC traits 

(n=103; 47%). A genetic risk score (GRS) composed of all HbA1c-associated signals was 

strongly associated with T2D risk (OR=2.4, 95% CI 2.3-2.5, P=2.7x10-298). However, when 

using partitioned GRSs composed of these different classes of variants (Methods), we found 

the T2D association was mainly driven by variants influencing HbA1c through glycemic 

pathways (OR=2.6, 95% CI 2.5-2.8, P=2.3x10-250), with weaker evidence of association 

(despite the larger number of variants in the GRS) and a more modest risk (OR=1.4, 95% CI 

1.2-1.7, P=4.7x10-4) imparted by signals in the mature RBC cluster that were not glycemic 

(i.e. where those specific variants had P>0.05 for FI, 2hGlu and FG) (Extended Data Figure 

6, Supplementary note). This contrasts our previous finding where we found no significant 

association between a risk score of non-glycemic variants and T2D7. Our current results 

could be partly driven by T2D cases being diagnosed based on HbA1c levels that may be 

influenced by the non-glycemic signals, or by glycemic effects not captured by FI, 2hGlu or 

FG measures.

Biological signatures of glycemic trait associated loci

To better understand distinct and shared biological signatures underlying variant-trait 

associations, we conducted genomic feature enrichment, eQTL co-localization, and tissue 

and gene-set enrichment analyses across all four traits.

Epigenomic landscape of trait-associated variants

We explored the genomic context underlying glycemic trait loci by computing overlap 

enrichment for annotations such as coding, conserved regions, and super enhancers merged 

across multiple cell types53–55 using the GREGOR tool56. We observed that FG, FI and 

HbA1c signals (Supplementary Table 7) were significantly (P<8.4x10-4, Bonferroni 

threshold for 59 annotations) enriched in evolutionarily conserved regions (Fig 5A, 

Extended Data Figure 7, Supplementary Table 15).

We then considered epigenomic landscapes defined in individual cell/tissue types. 

Previously, stretch enhancers (StrE, enhancer chromatin states ≥3kb in length) in pancreatic 

islets were shown to be highly cell-specific and strongly enriched with T2D risk signals57. 

Considering StrEs across 31 cell-types39, FG and 2hGlu signals showed the highest 

enrichment in islets (FG: fold-enrichment=4.70, P=2.7x10-24; 2hGlu: fold-enrichment=5.51, 

P=3.6x10-4 Figure 5A, Supplementary Table 16), highlighting the importance of islets for 

these traits. FI signals were enriched in skeletal muscle (fold-enrichment=3.17, P=7.8x10-6) 

and adipose StrEs (fold-enrichment=3.27, P=1.8x10-7) consistent with these tissues as 

targets of insulin action (Figure 5A). StrEs in individual cell types showed higher 

enrichment than super enhancers merged across cell types, highlighting the importance of 

cell-specific analyses (Figure 5A). HbA1c signals were enriched in StrEs of multiple cell 

types and tissues, but have the strongest enrichment in K562 leukemia derived cells (fold-

enrichment=3.24, P=1.2x10-7, Figure 5A). Among the “hard” glycemic and red blood cell 
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(mature + reticulocyte) HbA1c signals, glycemic signals were enriched in islet StrEs (fold-

enrichment=3.96, P=3.7x10-16) while red blood cell signals were enriched in K562 StrEs 

(fold-enrichment=7.5, P=2.08x10-14, Figure 5B, Supplementary Table 17). These analyses 

suggest that these glycemic trait-associated variants influence the function of tissue-specific 

enhancers.

Independent analyses with fGWAS58 and GARFIELD59 yielded consistent results (Extended 

Data Figures 8 and 9, Supplementary Tables 16 and 18). Notably, FI signals at a lenient 

threshold of P<10-5 were enriched in liver StrEs using GARFIELD (odds ratio=1.92, 

P=1.7x10-4) (Extended Data Figure 9A). This suggests that liver regulatory annotations are 

relevant for FI GWAS signals, but that we lack power to detect significant enrichment using 

the genome-wide significant loci and the current set of reference annotations.

We next explored the 27 loci driving the FI enrichment in adipose and skeletal muscle, 11 of 

which overlapped StrEs in both tissues (Figure 5C). At the COL4A2 locus, variants within 

an intronic region overlap StrEs in adipose tissue, skeletal muscle, and a human skeletal 

muscle myoblast (HSMM) cell line that are not shared across other cell/tissue types. Among 

these, rs9555695 (in the 99% CS) also overlaps accessible chromatin regions in adipose 

(Figure 5D). At a narrow signal with no proxy variants (LD r2>0.7 in Europeans), the lead 

trans-ancestry variant rs62271373 (PPA = 0.94) located in an intergenic region ~25kb from 

the LINC01214 gene overlaps StrEs specific to adipose and HSMM and an active enhancer 

chromatin state in skeletal muscle (Figure 5E). Collectively, the tissue-specific epigenomic 

signatures at GWAS signals provide an opportunity to nominate tissues where these variants 

are likely to be active. This map may help future efforts to deconvolute GWAS signals into 

tissue-specific disease pathology.

Co-localization of GWAS and eQTLs

Among the 99 novel glycemic trait loci, we identified co-localized eQTLs at 34 loci in 

blood, pancreatic islets, subcutaneous or visceral adipose, skeletal muscle, or liver, providing 

suggestive evidence of causal genes (Supplementary Table 19). The co-localized eQTLs 

include several genes previously reported at glycemic trait loci: ADCY5, CAMK1D, IRS1, 

JAZF1, and KLF14 60–62. For some additional loci, the co-localized genes have prior 

evidence for a role in glycemic regulation. For example, the lead trans-ancestry variant and 

likely causal variant, rs1799815 (PPA=0.993), associated with FI is the strongest variant 

associated with expression of INSR, encoding the insulin receptor, in subcutaneous adipose 

from METSIM (P=2x10-9) and GTEx (P=5x10-6). The A allele at rs1799815 is associated 

with higher FI and lower expression of INSR, consistent with the relationship between 

insulin resistance and reduced INSR function63. In a second example, rs841572, the trans-

ancestry lead variant associated with FG, has the highest PPA (PPA=0.535) among the 20 

variants in the 99% CS and is in strong LD (r2=0.87) with the lead eQTL variant (rs841576, 

also in the 99% CS) associated with SLC2A1 expression in blood (eQTLGen P=1x10-8). 

SLC2A1, also known as GLUT1, encodes the major glucose transporter in brain, placenta, 

and erythrocytes, and is responsible for glucose entry into the brain64. rs841572-A is 

associated with lower FG and lower SLC2A1 expression. While rare missense variants in 

SLC2A1 are an established cause of seizures and epilepsy65, our data suggest that SLC2A1 
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variants also affect plasma glucose levels within a population. These co-localized signals 

provide possible regulatory mechanisms for variant effects on genes to influence glycemic 

traits.

The co-localized eQTLs also provide new insights into the mechanisms at glycemic trait 

loci. For example, rs9884482 (in the 99% CS) is associated with FI and TET2 expression in 

subcutaneous adipose (P=2x10-20); rs9884482 is in high LD (r2=0.96 in Europeans) with the 

lead TET2 eQTL variant (rs974801). TET2 encodes a DNA-demethylase that can affect 

transcriptional repression 66. Adipose Tet2 expression is reduced in diet-induced insulin 

resistance in mice67, and knockdown of Tet2 blocked adipogenesis67,68. Consistently, in 

human adipose tissue, rs9884482-C was associated with lower TET2 expression and higher 

FI. In a second example, rs617948 is associated with HbA1c (in the 99% CS) and is the lead 

variant associated with C2CD2L expression in blood (eQTLGen P=3x10-96). C2CD2L, also 

known as TMEM24, regulates pulsatile insulin secretion and facilitates release of insulin 

pool reserves69,70. rs617948-G was associated with higher HbA1c and lower C2CD2L, 

providing evidence for a role of this insulin secretion protein in glucose homeostasis. Our 

HbA1c “soft” clustering assigned this signal to both the “unknown” (0.51 probability) and 

“reticulocyte” (0.42 probability) clusters. rs617948 is strongly associated with HbA1c 

(P<6.8x10-8), but not with FG, FI or 2hGlu (P>0.05, Supplementary Table 20, 

Supplementary Note). This suggests an effect of this variant on reticulocyte biology, and on 

insulin secretion, potentially influencing HbA1c levels through different tissues, and 

providing a plausible explanation for the classification as “unknown”.

Tissue Expression

Consistent with effector transcript expression analysis using GTEx data30, we found 

significant differences in tissue expression across the glycemic trait signals. FG signals were 

enriched for genes expressed in the pancreas (FDR<0.05), while there were an insufficient 

number of significant associations in 2hGlu to identify enrichment for any tissue or cell type 

at FDR<0.2 threshold. FI signals were enriched for connective tissue and cells (which 

includes adipose tissue), endocrine glands, blood cells, and muscles (FDR<0.2) and HbA1c 

signals were significantly enriched for genes expressed in the pancreas, hemic, and immune 

system (FDR<0.05) (Figure 6, Supplementary Table 21). Consistent with previous 

analysis30, FI-enrichment for connective tissue was driven by adipose tissue (subcutaneous 

and visceral), while the newly described enrichment with endocrine glands was driven by the 

adrenal glands and cortex (Supplementary Table 21). Beyond enrichment for genes 

expressed in glycemic-related tissues, HbA1c signals were enriched with genes expressed in 

blood, consistent with the role of RBC in this trait and our previous results30.

The association between FI signals and genes expressed in adrenal glands is notable, 

suggesting a possible direct role for these genes in insulin resistance. These genes might 

influence cortisol levels, which could contribute to insulin resistance and FI levels through 

impaired insulin receptor signaling in peripheral tissues, as well as influencing body fat 

distribution, stimulate lipolysis, and other indirect mechanisms71,72.
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Gene-set Analyses

Next, we performed gene-set analysis using DEPICT (Methods). In keeping with previous 

results30, we found distinct gene-sets enriched (FDR<0.05) for each glycemic trait except 

2hGlu, which had insufficient associations to have power in this analysis. FG-associated 

variants highlighted gene-sets involved in metabolism and gene-sets involved in general 

cellular function such as “cytoplasmic vesicle membrane” and “circadian clock”” (Figure 

7A). In contrast, in addition to metabolism-related gene-sets, FI-associated variants 

highlighted pathways related to growth, cancer and reproduction (Figure 7B). This is 

consistent with the role of insulin as a mitogenic hormone, and with epidemiological links 

between insulin and certain types of cancer73 and reproductive disorders such as polycystic 

ovary syndrome74. HbA1c-associated variants highlighted many gene-sets (Figure 7C), 

including those linked to metabolism and hematopoiesis, again recapitulating our postulated 

effects of variants on glucose and RBC biology. Additional pathways from HbA1c-

associated variants also highlighted previous “CREBP PPI” and lipid biology related to 

T2D75 and HbA1c76, respectively, and potential new biology through which variants may 

influence HbA1c.

Discussion

Here we describe a large glycemic trait meta-analysis of GWAS for which 30% of the 

population was composed of East Asian, Hispanic, African-American, South Asian and sub-

Saharan African participants. This effort identified 242 loci (235 trans-ancestry and seven 

single-ancestry), which jointly explain between 0.7% (2hGlu in European ancestry 

individuals) and 6% (HbA1c in African American ancestry individuals) of the variance in 

glycemic traits in any given ancestry. While 114/242 loci are associated with T2D (P<10-4; 

83 loci with P<5x10-8, Supplementary Table 4), absence of strong evidence of association at 

the remaining loci (P≥10-4) suggests that for alleles more frequent than 5% we can exclude 

T2D ORs≥1.07 with 80% power (alpha=5x10-8; and ORs≥1.05 for alpha=10-4) given a 

current study of 228,499 T2D cases and 1,178,783 controls27. We identified 486 signals 

associated with glycemic traits, of which eight have MAF<1%, and 45 have 1%<=MAF<5% 

in all ancestries, highlighting that 89% of signals identified are common in at least one 

ancestry studied.

A key aim of our study was to evaluate the added advantage of including population 

diversity in genetic discovery and fine-mapping efforts. Beyond the larger sample size 

included in the trans-ancestry meta-analysis, we were able to estimate the contribution of 

non-European ancestry data in locus discovery and fine-mapping resolution. We found that 

24 of the 99 newly discovered loci owe their discovery to the inclusion of East Asian, 

Hispanic, African-American, South Asian and sub-Saharan African participant data, due to 

differences in EAF and effect sizes across ancestries.

Comparison of 295 trans-ancestry lead variants (315 locus-trait associations) across 

ancestries demonstrated that between 81.5% (HbA1c) and 85.7% (FG) of the trans-ancestry 

lead variants had no evidence of trans-ancestry heterogeneity in allelic effects (P>0.05).

Chen et al. Page 11

Nat Genet. Author manuscript; available in PMC 2021 November 30.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Given sample size and power limitations, genome-wide significant trait-associated variants 

in a single-ancestry explain only a modest proportion of trait variance in that ancestry 

(Figure 2). We demonstrate that trans-ancestry lead variants explain more trait variance than 

the ancestry-specific variants (Figure 2). This shows that even though some trans-ancestry 

lead variants are not genome-wide significant in all ancestries, they contribute to the genetic 

architecture of the trait in most ancestries.

We evaluated for the first time the transferability of European ancestry-derived glycemic 

trait PGS into other ancestries. Consistent with other traits36,77,78, we confirm that European 

ancestry-derived PGS perform much worse when the test dataset is from a different ancestry. 

Each trait-specific PGS improves trait variance explained by between 3.5-fold (HbA1c) and 

6-fold (FG) in the European dataset (Figure 3, Supplementary Table 12) compared to a score 

built only from trans-ancestry lead variants and European index variants (Figure 2, 

Supplementary tables 9-12).

Despite development of approaches to derive polygenic risk scores79, we note the difficulty 

in using summary level data to build a PGS in one ancestry and then apply it in test datasets 

of different ancestry. While PRS-CSauto34 is able to use summary level data, revision of the 

effect size estimates to account for LD required reference panels that matched the ancestry 

of the test dataset. However, the current software lacks appropriate reference panels for 

many ancestries, precluding its broad application. Future developments of trans-ancestry 

PGS are required for improved cross-ancestry performance.

We show that fine-mapping resolution is improved in trans-ancestry, compared to single-

ancestry fine-mapping efforts. In ~50% of our loci, we showed that the improvement was 

due to differences in EAF, effect size, or LD structure between ancestries, and not just due to 

the overall increased sample size available for trans-ancestry fine-mapping. By performing 

trans-ancestry fine-mapping, and co-localizing GWAS signals with eQTL signals and coding 

variants, we identified new candidate causal genes. Altogether, these results motivate 

continued expansion of genetic and genomic efforts in diverse populations to improve 

understanding of these traits in groups disproportionally affected by T2D.

Given data on four different glycemic traits and their utility to diagnose and monitor T2D 

and metabolic health, we also sought to characterize biological features underlying these 

traits. We show that despite significant sharing of loci across the four traits, each trait is also 

characterized by unique features based on StrE, gene expression and gene-set signatures. 

Combining genetic data from these traits with T2D data will further elucidate pathways 

driving normal physiology and pathophysiology, and help further develop useful predictive 

scores for disease classification and management4,5.

Online Methods

Study design and participants

This study included trait data from four glycemic traits: fasting glucose (FG), fasting insulin 

(FI), 2hr post-challenge glucose (2hGlu), and glycated hemoglobin (HbA1c). The total 

number of contributing cohorts ranged from 41 (2hGlu) to 131 (FG), and the maximum 
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sample size for each trait ranged from 85,916 (2hGlu) to 281,416 (FG) (Supplementary 

Table 1). Ancestry was initially defined at the cohort level, but within each cohort ancestry 

was confirmed with genetic data with ancestry outliers removed (Supplementary Table 1). 

Overall, European ancestry (EUR) participants dominated the sample size for all traits, 

representing between 68.0% (HbA1c) to 73.8% (2hGlu) of the overall sample size. African 

Americans (AA) represented between 1.7% (2hGlu) to 5.9% (FG) of participants; 

individuals of Hispanic ancestry (HISP) represented between 6.8% (FG) to 14.6% (2hGlu) 

of participants; individuals of East-Asian ancestry (EAS) represented between 9.9% (2hGlu) 

to 15.4% (HbA1c) of participants; and South-Asian ancestry (SAS) individuals represented 

between 0% (no contribution to 2hGlu) to 4.4% (HbA1c) of participants. Data from 

Ugandan participants were only available for the HbA1c analysis and represented 2% of 

participants.

Phenotypes

Analyses included data for FG and 2hGlu measured in mmol/l, FI measured in pmol/l, and 

HbA1c in % [where possible, studies reported HbA1c as a National Glycohemoglobin 

Standardization Program (NGSP) percent]. Similar to previous MAGIC efforts7, individuals 

were excluded if they had type 1 or type 2 diabetes (defined by physician diagnosis); 

reported use of diabetes-relevant medication(s); or had a FG ≥7 mmol/L, 2hGlu 

≥11.1mmol/L, or HbA1c ≥ 6.5%, as detailed in Supplementary Table 1. 2hGlu measures 

were obtained 120 minutes after a glucose challenge in an oral glucose tolerance test 

(OGTT). Measures for FG and FI taken from whole blood were corrected to plasma level 

using the correction factor 1.1380.

Genotyping, quality control, and imputation

Each participating cohort performed study-level quality control, imputation, and association 

analyses following a shared analysis plan. Cohorts were genotyped using commercially 

available genome-wide arrays or the Illumina CardioMetabochip (Metabochip) array 

(Supplementary Table 1)81. Prior to imputation, each cohort performed stringent sample and 

variant quality control (QC) to ensure only high-quality variants were kept in the genotype 

scaffold for imputation. Sample quality control checks included removing samples with low 

call rate < 95%, extreme heterozygosity, sex mismatch with X chromosome variants, 

duplicates, first- or second-degree relatives (unless by design), or ancestry outliers. 

Following sample QC, cohorts applied variant QC thresholds for call rate (< 95%), Hardy-

Weinberg Equilibrium (HWE) P < 1x10-6, and minor allele frequency (MAF). Full details of 

QC thresholds and exclusions by participating cohort are available in Supplementary Table 

1.

Imputation was performed up to the 1000 Genomes Project phase 1 (v3) cosmopolitan 

reference panel82, with a small number of cohorts imputing up to the 1000 Genomes phase 3 

panel19 or population-specific reference panels (Supplementary Table 1).

Study level association analyses

Each of the glycemic traits (FG, natural log FI, and 2hGlu) were regressed on BMI (except 

HbA1c), study-specific covariates, and principal components (unless implementing a linear 
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mixed model). Analyses for FG, FI, and 2hGlu were adjusted for BMI as we had previously 

shown this did not materially affect results for FG and 2hGlu but improved our ability to 

detect FI-associated loci15. For simplicity, we refer to the traits as FG, FI and 2hGlu. For a 

discussion on collider bias see Supplementary Note section 2c. Both the raw and rank-based 

inverse normal transformed residuals from the regression were tested for association with 

genetic variants using SNPTEST23 or Mach2Qtl83,84. Poorly imputed variants, defined as 

imputation r2 < 0.4 or INFO score < 0.4, were excluded from downstream analyses 

(Supplementary Table 1). Following study level QC, approximately 12,229,036 variants 

(GWAS cohorts) and 1,999,204 variants (Metabochip cohorts) were available for analysis 

(Supplementary Table 1).

Centralized quality control

Each contributing cohort shared their summary statistic results with the central analysis 

group who performed additional QC using EasyQC85. Allele frequency estimates were 

compared to estimates from 1000Gp1 reference panel82, and variants were excluded from 

downstream analyses if there was a minor allele frequency difference > 0.2 for AA, EUR, 

HISP, and EAS populations against AFR, EUR, MXL, and ASN populations from 1000 

Genomes Phase 1, respectively, or a minor allele frequency difference > 0.4 for SAS against 

EUR populations. At this stage, additional variants were excluded from each cohort file if 

they met one of the following criteria: were tri-allelic; had a minor allele count (MAC) < 3; 

demonstrated a standard error of the effect size ≥ 10; or were missing an effect estimate, 

standard error, or imputation quality. All data that survived QC (approximately 12,186,053 

variants from GWAS cohorts and 1,998,657 variants from Metabochip cohorts) were 

available for downstream meta-analyses.

Single-ancestry meta-analyses

Single-ancestry meta-analyses were performed within each ancestry group using the fixed-

effects inverse variance meta-analysis implemented in METAL20. We applied a double-

genomic control (GC) correction15,86 to both the study-specific GWAS results and the 

single-ancestry meta-analysis results. Study-specific Metabochip results were GC-corrected 

using 4,973 SNPs included on the Metabochip array for replication of associations with QT-

interval, a phenotype not correlated with our glycemic traits15.

Identification of single-ancestry index variants

To identify distinct association index variants across each chromosome within each ancestry 

(Table 1), we performed approximate conditional analyses implemented in GCTA21 using 

the --cojo-slct option (autosomes) and distance-based clumping (X chromosome). Linkage 

disequilibrium (LD) correlations for GCTA were estimated from a representative cohort 

from each ancestry: WGHS (EUR); CHNS (EAS); SINDI (SAS); BioMe (AA); SOL (HISP) 

and Uganda (for itself). The results from GCTA were comparable when using alternative 

cohorts for the LD reference. For any index variant with a QC flag which caused reason for 

concern, we performed manual inspection of forest plots to decide whether the signal was 

likely to be real (Supplementary note). Among 335 single-ancestry index variants across all 

traits, this manual inspection was done for 40 signals of which 32 passed and 8 failed after 

inspection. Thus, a total of 327 single-ancestry index variants passed and 8 failed.
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Trans-ancestry meta-analyses

To leverage power across all ancestries, we also conducted trait-specific trans-ancestry meta-

analysis by combining the single-ancestry meta-analysis results using MANTRA 

(Supplementary note)87.We defined log10Bayes’ Factor (BF) > 6 as genome-wide 

significant, approximately comparable to P < 5x10-8.

Manual curation of trans-ancestry lead variants

To ensure trans-ancestry lead variants were robust, we performed manual inspection of 

forest plots by at least two authors, for any variants with flags indicating possible QC issues 

(Supplementary note). Of 463 trans-ancestry lead variants across all traits, 184 passed 

without inspection, 131 passed after inspection, and 148 failed after inspection.

Comparison of TA lead variants across ancestries

For each pair of ancestries, we calculated Pearson’s correlation in EAFs for each trans-

ancestry lead variant. The pairwise summarized heterogeneity of effect sizes between 

ancestries was then tested using the joint F-test of heterogeneity32. The test statistic is the 

sum of Cochran Q-statistics for heterogeneity across all trans-ancestry signals. Under the 

null hypothesis, the statistics follows the χ2 distribution with n degrees of freedom, where n 

is the number of the trans-ancestry lead variants.

LD-pruned variant lists

Several downstream analyses (for example, genomic feature enrichment, genetic scores, and 

estimation of variance explained by associated variants) require independent LD-pruned 

variants (r2<0.1) to avoid double-counting variants which might otherwise be in LD with 

each other and that do not provide additional “independent” evidence. Therefore, for these 

analyses we generated different lists of either TA or single-ancestry LD pruned (r2<0.1) 

variants, keeping in each case the variant with the strongest evidence of association 

(Supplementary Table 7). Subsequently, we combined TA and single-ancestry variant lists 

and conducted further LD pruning. For some analyses, we took the TA pruned variant list 

and added single-ancestry signals if the LD r2<0.1, while for others we started with the 

single-ancestry pruned lists and supplemented with TA lead variants if the LD r2<0.1. One 

exception was the list used for eQTL co-localizations, which included all single-ancestry 

European signals (without LD pruning) and supplemented with any additional TA lead 

variants (starting from the variants with the most significant P-values) in EUR LD r2<0.1 

with any of the variants already in list, and that reached at least P<1x10-5 in the European 

ancestry meta-analysis.

Trait variance explained by associated loci

To determine how much of the phenotypic variance of each trait could be explained by the 

corresponding trait-associated loci, variants were combined in a series of weighted genetic 

scores (GS). The analysis was performed in a subset of the cohorts included in the discovery 

GWAS (with representation from each ancestry) and in a smaller number of independent 

cohorts (European ancestry only). Up to three different GS were derived per trait (and for 

each ancestry) in order to evaluate the potential for the trans-ancestry meta-GWAS identified 
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loci to provide additional information above and beyond that contributed by the ancestry-

specific meta-analysis results. These GS comprised: List A - single-ancestry signals; List B - 

single-ancestry signals plus trans-ancestry signals; and List C - trans-ancestry signals plus 

single-ancestry signals (Supplementary Table 7). In the case of the European ancestry 

cohorts that contributed to the GWAS, we employed the method of Nolte et al.33 to adjust 

the effect sizes (betas) from the GWAS for the contribution of that cohort, providing sets of 

cohort-specific effect sizes that were then used to generate the GS. The association between 

each GS and its corresponding trait was tested by linear regression and the adjusted R2 from 

the model extracted as an estimate of the variance explained.

Transferability of polygenic scores (PGS) across ancestries

We used the PRS-CSauto34 software to first build European ancestry-derived PGS for each 

glycemic trait (FG, FI, 2hGlu, HbA1c) on the basis of summary statistics. However, PRS-

CSauto does not perform well when the training dataset is relatively small and the genetic 

architecture is sparse34. Consequently, 2hGlu was excluded from this analysis. For each trait, 

to obtain European ancestry training and test datasets, we first removed all cohorts only 

genotyped on the Metabochip which were not included in this analysis. From the remaining 

cohorts we then removed five of the largest European cohorts contributing to the respective 

European ancestry meta-analysis. For each trait, these five cohorts were meta-analyzed and 

used as the European ancestry test dataset. Subsequently, the remaining European ancestry 

cohorts were also meta-analyzed and used as the European ancestry training dataset. For 

each of the other ancestries, cohorts only genotyped on the Metabochip were also removed, 

and the remaining cohorts were meta-analyzed, and used as the non-European ancestry test 

datasets. Variants with MAF<0.05 or missing in over half of the individuals in the training 

dataset were removed34,88. The PGS for each trait was built using PRS-CSauto with default 

settings34 with the effect size estimates based on the European training dataset being revised 

based on an LD reference panel matching the test dataset. The proportion of the trait 

variance explained by the European ancestry-derived PGS (R2) was estimated using the R 

package “gtx”89 based on the revised effect sizes and summary statistics from the test 

dataset for each ancestry.

Fine-mapping

Of the 242 loci identified in this study, 237 were autosomal loci which we took forward for 

fine-mapping (Supplementary Table 2). We used the Bayesian fine-mapping method 

FINEMAP90 (version 1.1) to refine association signals and attempt to identify likely causal 

variants at each locus. FINEMAP estimates the maximum number of causal variants at each 

locus, calculates the posterior probability of each variant being causal, and proposes the 

most likely configuration of causal variants. The posterior probabilities of the configurations 

in each locus were used to construct 99% credible sets.

We performed both single-ancestry and trans-ancestry fine-mapping. In both analyses, only 

data from cohorts genotyped on GWAS arrays were used, and analyses were limited to trans-

ancestry lead variants and other single-ancestry lead variants present in at least 90% of the 

samples for each trait. For the single-ancestry fine-mapping, FINEMAP estimates the 

number of causal variants in a region up to a maximum number, which we set to be two plus 
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the number of distinct signals identified from the GCTA signal selection. FINEMAP uses 

single-ancestry and trait-specific z-scores from the fixed-effect meta-analysis in METAL20 

and an ancestry-specific LD reference, which we created from a subset of cohorts (combined 

sample size > 30% of the sample size for that ancestry), weighting each cohort by sample 

size. In the trans-ancestry fine-mapping, FINEMAP was similarly used to estimate the 

number of causal variants starting with two, and trait-specific z-scores and LD maps were 

generated from the sample size weighted average of those used in the single-ancestry fine-

mapping. The maximum number of causal variants was iteratively increased by one until it 

was larger than the number of causal variants supported by data (Bayes factor), which was 

the estimated maximum number of causal variants used in the final run of fine-mapping 

analysis.

To compare fine-mapping results obtained from the single-ancestry and trans-ancestry 

efforts, analyses were limited to fine-mapping regions with evidence for a single likely 

causal variant in both, enabling a straightforward comparison of credible sets 

(Supplementary note). To ensure any difference in the fine-mapping results was not driven 

by different sets of variants being present in the different analyses, we repeated the single-

ancestry fine-mapping limited to the same set of variants used in the trans-ancestry fine-

mapping. The fine-mapping resolution was assessed based on comparisons of the 99% 

credible sets in terms of number of variants included in the set, and length of the region. To 

assess whether the improvement in the trans-ancestry fine-mapping was due to differences in 

LD, increased sample size, or both, we repeated the trans-ancestry fine-mapping mimicking 

the sample size present in the single-ancestry fine-mapping by dividing the standard errors 

by the square root of the sample size ratio and compared the results with those from the 

single-ancestry fine-mapping.

Functional Annotation of trait-associated variants

HbA1c signal classification

There were 218 HbA1c-associated signals from either the single-ancestry (i.e. all GCTA-

signals from any ancestry) or trans-ancestry meta-analyses. To classify these signals in terms 

of their likely mode of action (i.e., glycemic, erythrocytic, or other 7), we examined 

association summary statistics for the lead variants at the 218 signals in other large European 

datasets for 19 additional traits: three glycemic traits from this study (FG, 2hGlu and FI); 

seven mature red blood cell (RBC) traits91,92 (red blood cell count, mean corpuscular 

volume, hematocrit, mean corpuscular hemoglobin, mean corpuscular hemoglobin 

concentration, hemoglobin concentration and red cell distribution width); five reticulocyte 

traits (reticulocyte count, reticulocyte fraction of red cells, immature fraction of 

reticulocytes, high light scatter reticulocyte count and high light scatter percentage of red 

cells)91,92, and four iron traits (serum iron, transferrin, transferrin saturation and ferritin)93. 

Of the 218 HbA1c signals, data were available for the lead (n=183) or proxy (European LD 

r2 > 0.8, n = 8) variants at 191 signals.

The additional traits were clustered using hierarchical clustering to ensure biologically 

related traits would cluster together (Supplementary note). We then used a non-negative 

matrix factorization (NMF)94 process to cluster the HbA1c signals. Each cluster was 
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labelled as glycemic, reticulocyte, mature RBC, or iron related based on the strength of 

association of signals in the cluster to the glycemic, reticulocyte, mature RBC and iron traits 

(Supplementary note). To verify that our cluster naming was correct, we used HbA1c 

association results conditioned on either FG or iron traits, or type 2 diabetes association 

results (Supplementary note).

HbA1c genetic risk scores (GRSs) and T2D risk

We constructed GRS for each cluster of HbA1c-associated signals (based on hard clustering) 

and tested the association of each cluster with T2D risk using samples from the UK 

Biobank. Pairs of HbA1c signals in LD (EUR r2>0.10) were LD pruned by removing the 

signal with the less significant P-value of association with HbA1c. The GRS for each cluster 

was calculated based on the logarithm of odds ratios from the latest T2D study summary 

statistics95 and UK Biobank genotypes imputed to the Haplotype Reference Consortium19. 

From 487,409 UK Biobank samples (age between 46 and 82 years, and 55% female), we 

excluded participants for the following reasons: 373 with mismatched sex; 9 not used in the 

kinship calculation; 78,365 non-European ancestry individuals; and 138,504 with missing 

T2D status, age, or sex information. We further removed 26,896 related participants (kinship 

> 0.088, preferentially removing individuals with the largest number of relatives and 

controls where a T2D case was related to a control). T2D cases were defined by: (i) a history 

of diabetes without metformin or insulin treatment, (ii) self-reported diagnosis of T2D, or 

(iii) diagnosis of T2D in a national registry (N = 17,022, age between 47 and 79 years, and 

36% female). Controls were participants without a history of T2D (N = 226,240, age 

between 46 and 82 years, and 56% female). We tested for association between each GRS 

and T2D using logistic regression including covariates for age, sex, and the first five 

principal components. Significance of association was evaluated by a bootstrap approach to 

incorporate the variance of each HbA1c associated signal in the T2D summary data. To do 

this, we generated the GRS of each cluster 200 times by resampling the logarithm of odds 

ratio of each signal with T2D. For each non-glycemic class that had a GRS significantly 

associated with T2D, we performed sensitivity analyses to evaluate whether the association 

was driven from variants that also belonged to a glycemic cluster when using a soft 

clustering approach (the signals were classified as also glycemic in the soft clustering or had 

an association P ≤ 0.05 with any of the three glycemic traits).

Chromatin states

To identify genetic variants within association signals that overlapped predicted chromatin 

states, we used a previously published, 13 chromatin state model that included 31 diverse 

tissues, including pancreatic islets, skeletal muscle, adipose, and liver39. Briefly, this model 

was generated from cell/tissue ChIP-seq data for H3K27ac, H3K27me3, H3K36me3, 

H3K4me1, and H3K4me3, and input control from a diverse set of publicly available 

data53,57,96,97 using the ChromHMM program98. As reported previously39, StrEs were 

defined as contiguous enhancer chromatin state (Active Enhancer 1 and 2, Genic Enhancer 

and Weak Enhancer) segments longer than 3kb57.
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Enrichment of genetic variants in genomic features

We used GREGOR (version 1.2.1) to calculate the enrichment of GWAS variants 

overlapping static and StrEs56. For calculating the enrichment of glycemic trait-associated 

variants in these annotations, we used the filtered list of trait-associated variants as described 

above (Supplementary Table 7) as input. For calculating the enrichment of sub-classified 

HbA1c variants, we included the list of loci characterized as Glycemic, another list of loci 

characterized as Reticulocyte or mature Red Blood Cell, collectively representing the red 

blood cell fraction, along with lists of iron related or unclassified loci (Supplementary Table 

17). We used the following parameters in GREGOR enrichment analyses: European r2 

threshold (for inclusion of variants in LD with the lead variant) = 0.8, LD window size = 1 

Mb, and minimum neighbour number = 500.

We used fGWAS (version 0.3.6)58 to calculate enrichment of glycemic trait-associated 

variants in static and StrE annotations using summary level GWAS results. We used the 

default fGWAS parameters for enrichment analyses for individual annotations for each trait. 

For each annotation, the model provided the natural log of maximum likelihood estimate of 

the enrichment parameter. Annotations were considered as significantly enriched if the log2 

(parameter estimate) and respective 95% confidence intervals were above zero or 

significantly depleted if the log2 (parameter estimate) and respective 95% confidence 

intervals were below zero.

We tested enrichment of trait-associated variants in static and StrE annotations with 

GARFIELD (v2)59. We formatted annotation overlap files as required by the tool; prepared 

input data at two GWAS thresholds - of 1x10-5 and a more stringent 1x10-8 by pruning and 

clumping with default parameters (garfield-prep-chr script). We calculated enrichment in 

each individual annotation using garfield-test.R with –c option set to 0. We also calculated 

the effective number of annotations using the garfield-Meff-Padj.R script. We used the 

effective number of annotations for each trait to obtain Bonferroni corrected significance 

thresholds for enrichment for each trait.

eQTL analyses

To aid in the identification of candidate casual genes at the European-only and trans-ancestry 

association signals, we examined whether any of the lead variants associated with glycemic 

traits (Supplementary Table 7) were also associated with expression level (FDR < 5%) of 

nearby transcripts located within 1 Mb in existing eQTL data sets of blood, subcutaneous 

adipose, visceral adipose, skeletal muscle, and pancreatic islet samples60,61,99–102. LD was 

estimated from the collected cohort pairwise LD information, where available, else from the 

European samples in 1000G phase 3. GWAS and eQTL signals likely co-localize when the 

GWAS variant and the variant most strongly associated with the expression level of the 

corresponding transcript (eSNP) exhibit high pairwise LD (r2 > 0.8; 1000 Genomes Phase 3, 

EUR). At these signals, we conducted reciprocal conditional analyses to test association 

between the GWAS variant and transcript level when the eSNP was also included in the 

model, and vice versa. We report GWAS and eQTL signals as co-localized if the association 

for the eSNP was not significant (FDR ≥ 5%) when conditioned on the GWAS variant; we 
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also report signals from the eQTLGen whole blood meta-analysis data that meet only the LD 

threshold because conditional analysis was not possible.

Tissue and gene-set analysis

We performed enrichment analysis using DEPICT (Data-driven Expression-Prioritized 

Integration for Complex Traits) version 3, specifically developed for 1000 Genomes Project 

imputed meta-analysis data103 to identify cell types and tissues in which genes at trait-

associated variants were strongly expressed, and to detect enrichment of gene-sets or 

pathways. DEPICT data included human gene expression data for 19,987 genes in 10,968 

reconstituted gene sets, and 209 tissues/cell types. Because gene expression data in DEPICT 

is based on European samples and LD, we selected trait-associated variants with P<10-5 in 

the European meta-analysis and tested for enrichment of signals in each reconstituted gene-

set, and each tissue or cell type. Enrichment results with a false discovery rate (FDR)<0.05 

were considered significant. We ran DEPICT based on association results for all traits 

among: (i) cohorts with genome-wide data, or (ii) all cohorts (genome-wide and Metabochip 

cohorts). Because results were broadly consistent between the two approaches, we present 

results from the analysis that contained all cohorts as it had greater statistical power.

Statistics and reproducibility

Sample size—No statistical method was used to predetermine sample size. We aimed to 

bring together the largest possible sample size with GWAS data from individuals of diverse 

ancestries (European, Hispanic, African American, East Asian, South Asian and sub-

Saharan African) without diabetes and with data for one or more of the following traits: 

fasting glucose, fasting insulin, 2hr post-challenge glucose, and glycated hemoglobin. The 

sample sizes were 281,416 (FG), 213,650 (FI), 215,977 (HbA1c) and 85,916 (2hGlu) 

(Supplementary Table 1).Our sample size was sufficiently powered to detect common 

variant associations with each of the glycemic traits and was able to detect associations at 

242 loci.

Randomization/Blinding—This is a study of continuous traits therefore there were no 

experiments to randomize and there was no “outcome” to which investigators needed to be 

blinded to.

Data exclusions—Prior to conducting this study, we identified reasons for which data 

should be excluded from the analysis at either the cohort or summary level; these exclusions 

are as follows. Sample quality control checks included removing samples with low call rate 

< 95%, extreme heterozygosity, sex mismatch with X chromosome variants, duplicates, first- 

or second-degree relatives (unless by design), or ancestry outliers. Following sample QC, 

cohorts applied variant QC thresholds for call rate (< 95%), Hardy-Weinberg Equilibrium 

(HWE) P < 1x10-6, and minor allele frequency (MAF). Full details of QC thresholds and 

exclusions by participating cohort are available in Supplementary Table 1. Each contributing 

cohort shared their summary statistic results with the central analysis group who performed 

additional QC using EasyQC. Allele frequency estimates were compared to estimates from 

1000Gp1 reference panel, and variants were excluded from downstream analyses if there 

was a minor allele frequency difference > 0.2 for AA, EUR, HISP, and EAS populations 
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against AFR, EUR, MXL, and ASN populations from 1000 Genomes Phase 1, respectively, 

or a minor allele frequency difference > 0.4 for SAS against EUR populations. At this stage, 

additional variants were excluded from each cohort file if they met one of the following 

criteria: were tri-allelic; had a minor allele count (MAC) < 3; demonstrated a standard error 

of the effect size ≥ 10; imputation r2 < 0.4 or INFO score < 0.4; or were missing an effect 

estimate, standard error, or imputation quality.
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Extended Data

Extended Data Fig. 1. Flow diagram of this study
The figure shows the data, key methods and main analyses included in this effort.
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Extended Data Fig. 2. Locus diagram
Trans-ancestry locus A contains a trans-ancestry lead variant for one glycemic trait 

represented by the blue diamond, and another single-ancestry index variant for another 

glycemic trait represented by the orange triangle. Single-ancestry locus B contains a single-

ancestry lead variant represented by the purple square. The orange, blue and purple bars 

represent a +/- 500Kb window around the orange, blue, and purple variants, respectively. 

The black bars indicate the full locus window where trans-ancestry locus A contains trans-
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ancestry lead and single-ancestry index variants for two traits and single-ancestry locus B 

has a single-ancestry lead variant for a single trait.

Extended Data Fig. 3. Venn diagram
Overlap of TA loci between traits.
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Extended Data Fig. 4. Allele frequency versus effect size
Allele frequency versus effect size for all signals detected through the trans-ancestry meta-

analyses, for each of the four traits. Frequency and effect size are from the European meta-

analyses. The power curves were computed based on the European sample size for each 

trait, and the mean (m) and standard deviation (sd) computed on the FENLAND study: FG, 

m=4.83 mmol/l, sd=0.68; FI, m=3.69 mmol/l, sd=0.60; 2hGlu, m=5.30 mmol/l, sd=1.74; 

HbA1c, m=5.55%, sd=0.48.
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Extended Data Fig. 5. EAF correlation and heterogeneity test
Pearson correlation of EAF on the lower tri-angle and p-value of one-side heterogeneity test 

without multiple testing corrections on the upper tri-angle of the trans-ancestry lead variants 

associated with each trait between ancestries. Correlations > 0.7 are in bold.
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Extended Data Fig. 6. Forest plot of T2D GRS from HbA1c variants
The p-value on the right side is from the two-side test without multiple testing corrections. 

Vertical points of each diamond represent the point estimate of the odds ratio. The horizontal 

points of each diamond represent the 95% confidence interval of the odds ratio. Figure 

shows the association results between HbA1c-associated variants built into a GRS for T2D 

by taking each HbA1c-associated variant and using a weight that corresponds to its T2D 

effect size (logOR) based on analysis by the DIAGRAM consortium. The overall GRS is 
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subsequently partitioned according to the HbA1c signal classification. The overall and 

partitioned GRS were tested for association with T2D based on data from UK biobank.

Extended Data Fig. 7. Enrichment of glycemic trait associated GWAS variants to overlap 
genomic annotations using GREGOR
Figure shows enrichment for 59 total static and stretch enhancer annotations considered. 

One-side test significance (red) is determined after Bonferroni correction to account for 59 

total annotations tested for each trait; nominal significance (P<0.05) is indicated in yellow.
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Extended Data Fig. 8. Enrichment of glycemic trait associated GWAS variants to overlap 
genomic annotations using fGWAS
Figure shows log2(Fold Enrichment) of GWAS variants to overlap 59 static and stretch 

enhancer annotations calculated. Significant enrichment (red) is considered if the 95% 

confidence intervals (shown by the error bars) do not overlap 0.
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Extended Data Fig. 9. Enrichment of glycemic trait associated GWAS variants to overlap 
genomic annotations using GARFIELD
Figure shows the beta or effect size (log odds ratio) for GWAS variants to overlap 59 static 

and stretch enhancer annotations. GWAS variants were included at two significance 

thresholds, 1e-05 (A) and 1e-08 (B). One-side test significance (red) is determined after 

Bonferroni correction to account for effective annotations tested for each trait reported by 

GARFIELD (see supplementary note); nominal significance (P<0.05) is indicated in yellow. 

The 95% confidence intervals are shown by the error bars.
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Figure 1. Summary of all 242 loci identified in this study.
235 trans-ancestry loci are shown in orange (novel) or black (established) along with seven 

single-ancestry loci (blue) represented by nearest gene. Each locus is mapped to 

corresponding chromosome (outer segment). Each set of rows shows the results from the 

trans-ancestry analysis (orange) and each of the ancestries: European (purple), African 

American (tan), East Asian (grey), South Asian (green), Hispanic (yellow), sub-Saharan 

African (Ugandan-pink). Loci with a corresponding type 2 diabetes signal are represented by 

red circles in the middle of the plot.

Chen et al. Page 50

Nat Genet. Author manuscript; available in PMC 2021 November 30.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 2. Trait variance explained by associated loci.
The boxplots show the maximum, first quartile, median, third quartile and minimum of trait 

variance explained when using a genetic score with single-ancestry lead and index variants 

(EUR, AA, EAS, HISP and SAS) or a combination of individual trait trans-ancestry lead 

variants and single-ancestry lead and index variants (TA+EUR, TA+AA, TA+EAS, TA

+HISP and TA+SAS). Variance explained for each trait (FG, FI and HbA1c) in each 

ancestry is shown on different panels and in different colors. Data points represent the 
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variance explained in individual cohorts used in this analysis. R2 was estimated in 1 to 11 

cohorts with sample sizes ranging from 489 to 9,758 (Supplementary Tables 8-11).
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Figure 3. Transferability of PGS across ancestries.
For each trait, the barplots represent trait variance explained when using a European 

ancestry-derived PGS in European, East Asian and African American test datasets. Variance 

explained (the height of each bar) for each trait (FG, FI and HbA1c) in each ancestry is 

shown on different panels and in different colors.

Chen et al. Page 53

Nat Genet. Author manuscript; available in PMC 2021 November 30.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 4. Trans-ancestry fine-mapping.
A) Number of plausible causal variants at each locus-trait association derived from 

FINEMAP. B) Number of variants within each 99% credible set. Twenty-one locus-trait 

associations at 19 loci were mapped to a single variant in the 99% credible set. C) Fine-

mapping resolution. For each of the 98 locus-trait associations with a predicted single causal 

variant in both trans-ancestry and single-ancestry analyses, the number of variants included 

in the 99% credible set in the single-ancestry fine-mapping (x axis; logarithmic scale) is 

plotted against those in the trans-ancestry fine-mapping (y axis; logarithmic scale). Trans-

Chen et al. Page 54

Nat Genet. Author manuscript; available in PMC 2021 November 30.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



ancestry and single-ancestry fine-mapping were based on the same set of variants. After 

removing eight locus-trait associations with one variant in the 99% credible sets in both 

trans-ancestry and single-ancestry analyses, there were 18 locus-trait associations (in grey) 

where trans-ancestry fine-mapping did not improve the resolution of fine-mapping results 

(i.e. number of variants in the 99% credible set did not decrease). Of the 72 locus-trait 

associations with improved trans-ancestry fine-mapping resolution (blue and red) further 

analyses in European fine-mapping emulating the total sample size in trans-ancestry fine-

mapping demonstrated that 34 locus-trait associations (in red) were improved because of 

both total sample size and differences across ancestries, while 38 locus-trait associations (in 

blue) were only improved due to increased sample size in the original trans-ancestry fine-

mapping analysis.
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Figure 5. Epigenomic landscape of trait-associated variants.
A: Enrichment of GWAS variants to overlap genomic regions including ‘Static Annotations’ 

which are common or ‘static’ across cell types and ‘Stretch Enhancers’ which are identified 

in each tissue/cell type. The numbers of signals for each trait are indicated in parentheses. 

Enrichment was calculated using GREGOR 56. One-sided test for significance (red) is 

determined after Bonferroni correction to account for 59 total annotations tested for each 

trait; nominal significance (P<0.05) is indicated in yellow. B: Enrichment for HbA1c GWAS 

signals partitioned into “hard” Glycemic and Red Blood Cell cluster (signals from “hard” 
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mature Red Blood Cell and reticulocyte clusters together) to overlap annotations including 

StrEs in Islets and the blood-derived leukemia cell line K562, respectively (additional 

partitioned results in Supplementary Table 17). C: Individual FI GWAS signals that drive 

enrichment in Adipose and Skeletal Muscle StrEs. D, E: Genome browser shots of FI GWAS 

signals – intronic region of the COL4A2 gene (D) and an inter-genic region ~25kb from 

LINC01214 gene (E) showing GWAS SNPs (lead and LD r2>0.8 proxies), ATAC-seq signal 

tracks and chromatin state annotations in different tissues/cell types.
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Figure 6. Tissues and cell types significantly enriched for genes within glycemic-associated loci.
Top panel FG-associated loci, middle panel FI-associated loci, bottom panel Hba1c-

associated loci. FDR thresholds are shown in red (q<0.05), orange (q<0.2), black (q≥0.2).
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Figure 7. Gene-set enrichment analyses.
Results from affinity-propagation clustering of significantly enriched gene-sets (FDR<0.05) 

identified by DEPICT for A) FG, B) FI, and C) HbA1c. Each node is a meta gene-set which 

is represented by an exemplar gene-set within the meta gene-set. For example, in B. “chronic 

myeloid leukemia “ is an exemplar gene-set representing a much broader meta gene-set 

relating to cancer and represented in the zoomed in section on the right. Similarities between 

the meta gene-sets are represented by Pearson correlation coefficients (r>0.3). The nodes are 
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colored according to the minimum gene-set enrichment p-value for gene-sets in that meta 

gene-set.. PPI=protein-protein interaction network.
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Table 1

Glossary of terms - This study combined analyses of trait-associations across multiple correlated glycemic 

traits and across multiple ancestries, which has presented challenges in our ability to apply commonly used 

terms with clarity. For this reason, we define below terms often used in the field with variable meaning, as well 

as definitions of new terms used in this study.

Term Definition

EA (Effect 
allele)

The effect allele was that defined by METAL based on trans-ancestry FG results and aligned such that the same allele was 
kept as the effect allele across all ancestries and traits, irrespective of its allele frequency or effect size for that particular 
ancestry and trait, in this way the effect allele is not necessarily the trait-increasing allele.

Single-
ancestry lead 
variant

Variant with the smallest p-value amongst all with P < 5x10-8, within a 1Mb region, based on analysis of a single trait in a 
single ancestry.

Single-
ancestry index 
variants

Variants identified by GCTA analysis of each autosome, and that appear to exert conditionally distinct effects on a given trait 
in a given ancestry (P < 5x10-8). As defined, these include the single-ancestry lead variants.

Trans-ancestry 
lead variant

Variant identified by trans-ethnic meta-analysis of a given trait that has the strongest association for that trait (log10BF > 6, 
which is broadly equivalent to P < 5x10-8) within a 1Mb region.

Single-
ancestry locus

1Mb region centred on a single-ancestry lead variant which does not contain a lead variant identified in the trans-ancestry 
meta-analysis (i.e., does not contain a trans-ancestry lead variant).

Signal Conditionally independent association between a trait and a set of variants in LD with each other and which is noted by the 
corresponding index variant.

Trans-ancestry 
locus

A genomic interval that contains trans-ancestry trait-specific lead variants, with/out additional single-ancestry index variants, 
for one or more traits. This region is defined by starting at the telomere of each chromosome and selecting the first single-
ancestry index variant or trans-ancestry lead variant for any trait. If other trans-ancestry lead variants or single-ancestry index 
variants mapped within 500kb of the first signal, then they were merged into the same locus. This process was repeated until 
there were no more signals within 500kb of the previous variant. A 500kb interval was added to the beginning of the first 
signal, and the end of the last signal to establish the final boundary of the trans-ancestry locus (Extended Data Figure 2). As 
defined, a trans-ancestry locus may not have a single lead trans-ancestry variant, but may instead contain multiple trans-
ancestry lead variants, one for each trait.
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