96 research outputs found

    LOADING IN TENNIS STROKE PRODUCTION

    Get PDF
    The goal of analyzing the loads associated with tennis stroke production is optimizing tennis performance, while at the same time minimizing the risk of injury. Thus, important issues may include: how the power of a stroke is produced; how the loads are generated and transmitted and how improper techniques would increase the risk of injury. These issues are discussed with particular reference to the tennis backhand and tennis elbow

    Kinetic Energy Analysis for Soccer Players and Soccer Matches

    Get PDF
    A simple and practical semi-empirical formula for the calculation of the Mean Specific Kinetic Energy (MSKE) of a soccer player over a match is developed based on the statistical analysis of the detailed records of the time courses of locations of all players for a single match. This formula is further supported by additional tests and some theoretical analysis. The formula is then applied to five matches. This formula can be used not only to compare different players, but also to compare different teams, to see how active and how energetic they are during a match. This formula can also be used to test whether there is a significant effect of a training program on the kinetic energy of players of a team. Key Words: Soccer; Energy; Statistics; Trainin

    Statistical Analysis for the First Bundesliga in the Current Soccer Season

    Get PDF
    Statistical analysis for the 153 matches of First Bundesliga, i.e. the first national soccer league in Germany, in the first 17 “playing days” (August 10, 2013 to January 29, 2014) of the current soccer season was made. Various team parameters were compared between the winning and losing teams in the 118 non-drawing matches. The results support the conclusions of our earlier analysis (Yue, Broich, & Mester, 2014) that the quality of shots, represented by the goal efficiency, defined by the number of goals divided by the number of shots, is more important than the quantity of shots for winning a soccer game. This conclusion is also confirmed by the correlation analysis based on all the 153 matches: The correlation between the number of goals and the goal efficiency is found to be much stronger than the correlation between the number of goals and the number of shots. The team parameters of the second to the fourth importance are the number of shots, the number of passes and the number of ball contacts respectively. In contrast, the distance coverage is found to be statistically not important for winning a game

    Performance assessment in elite football players: field level test versus spiroergometry

    Get PDF
    The purpose of this study was to demonstrate that elite football players with the same anaerobic threshold calculated from the lactate performance curve during a field level test may have substantially different values describing endurance performance capacity determined from spiroergometric laboratory tests. A group of 28 male elite football players underwent a field level test and a spiroergometric laboratory test. A subgroup of players with the same anaerobic threshold was selected, and the endurance performance capacity obtained from spiroergometric measurements during treadmill level tests were compared descriptively within this subgroup. Among the three players with the same anaerobic threshold, test duration for the treadmill level test and consequently also the maximal lactate value achieved during the test varied substantially. The tests were aborted after 5 min at 4.4, 4.8 and 4.0 m·s-1 for players 1, 2 and 3, respectively. VO2-values at V4 were 87 %, 75 % and 96 % of their personal VO2-peak, respectively. Maximum lactate concentrations were 8.8, 9.2 and 5.3 mmol·L-1, respectively. Peak relative VO2 values were 55.0, 61.6 and 59.7 ml·min-1·kg-1, respectively. The result of this study clearly show that conventional field level tests yield insufficient information on underlying physiological and metabolic mechanisms of endurance performance capacity. Taking result of spiroergometric tests into account is critical for designing and evaluating player-specific training programs aimed at optimizing each player’s performance

    Effect of Segment-Body Vibration on Strength Parameters

    Get PDF
    Background In this study, we examine the biomechanical advantage of combining localized vibrations to hamstring muscles involved in a traditional resistance training routine. Methods Thirty-six male and female participants with at least 2 years of experience in resistance training were recruited from the German Sport University Cologne. The participants were randomized into two training groups: vibration training group (VG) and traditional training group (TTG). Both groups underwent a 4-week training phase, where each participant worked out at 70 % of the individual 1 repeat maximum (RM—maximum load capacity of a muscle for one lift to fatigue) (4 sets with 12 repetitions each). For participants in the VG group, local vibration was additionally applied directly to hamstring muscles during exercise. A 2-week examination phase preceded the pretests. After the pretests, the subjects underwent a prescribed training for 4 weeks. At the conclusion of the training, a 2-week detraining was imposed and then the study concluded with posttests and retest. Results The measured parameters were maximum isometric force of the hamstrings and maximum range of motion and muscle tension at maximum knee angle. The study revealed a significant increase in maximum isometric force in both training groups (VG = 21 %, TTG = 14 %). However, VG groups showed an increase in their range of motion by approximately 2 %. Moreover, the muscle tension at maximum knee angle increased less in VG (approximately 35 %) compared to TG (approximately 46 %). Conclusions We conclude that segment-body vibrations applied in resistance training can offer an effective tool to increase maximum isometric force, compared to traditional training. The cause for these findings can be attributed to the additional local vibration stimulus.NPRP award NPRP 05-086-2-031 from the Qatar National Research Fund (a member of The Qatar Foundation)

    Sensitivity of serum concentration of cartilage biomarkers to 21-days of bed rest

    Get PDF
    The objective of the study was to test the hypothesis that serum levels of cartilage oligomeric matrix protein (COMP) would decrease and serum levels of tumor-necrosis factor alpha (TNF-α) and selected matrix metalloproteinases (MMPs) would increase in response to bed rest (BR) and that these changes are unaffected by the intake of potassium bicarbonate or whey protein. Seven and nine healthy male subjects participated in two 21-day 6° head down tilt crossover BR-studies with nutrition interventions. Serum samples were taken before, during, and after BR and biomarker concentrations were measured using commercial enzyme-linked immunosorbent assays. MMP-3 during BR was significantly lower than at baseline (reduction greater 20%; p < 0.001). MMP-3 increased significantly from 14 to 21 days of BR (+7%; p = 0.049). COMP during BR was significantly lower than at baseline (reduction greater 20%; p < 0.001). MMP-3 and COMP returned to baseline within 1 day after BR. MMP-9 on day 3 of BR was significantly lower than at baseline (-31%; p < 0.033) and on days 3, 5, and 14 of BR significantly lower than at the end of and after BR (reduction greater 35%; p < 0.030). The nutritional countermeasures did not affect these results. The observed changes in cartilage biomarkers may be caused by altered cartilage metabolism in response to the lack of mechanical stimulus during BR and inflammatory biomarkers may play a role in changes in biomarker levels.; Immobilization independently from injury can cause altered cartilage biomarker concentration. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res

    Criterion-Validity of Commercially Available Physical Activity Tracker to Estimate Step Count, Covered Distance and Energy Expenditure during Sports Conditions

    Get PDF
    Background: In the past years, there was an increasing development of physical activity tracker (Wearables). For recreational people, testing of these devices under walking or light jogging conditions might be sufficient. For (elite) athletes, however, scientific trustworthiness needs to be given for a broad spectrum of velocities or even fast changes in velocities reflecting the demands of the sport. Therefore, the aim was to evaluate the validity of eleven Wearables for monitoring step count, covered distance and energy expenditure (EE) under laboratory conditions with different constant and varying velocities.Methods: Twenty healthy sport students (10 men, 10 women) performed a running protocol consisting of four 5 min stages of different constant velocities (4.3; 7.2; 10.1; 13.0 km·h−1), a 5 min period of intermittent velocity, and a 2.4 km outdoor run (10.1 km·h−1) while wearing eleven different Wearables (Bodymedia Sensewear, Beurer AS 80, Polar Loop, Garmin Vivofit, Garmin Vivosmart, Garmin Vivoactive, Garmin Forerunner 920XT, Fitbit Charge, Fitbit Charge HR, Xaomi MiBand, Withings Pulse Ox). Step count, covered distance, and EE were evaluated by comparing each Wearable with a criterion method (Optogait system and manual counting for step count, treadmill for covered distance and indirect calorimetry for EE).Results: All Wearables, except Bodymedia Sensewear, Polar Loop, and Beurer AS80, revealed good validity (small MAPE, good ICC) for all constant and varying velocities for monitoring step count. For covered distance, all Wearables showed a very low ICC (<0.1) and high MAPE (up to 50%), revealing no good validity. The measurement of EE was acceptable for the Garmin, Fitbit and Withings Wearables (small to moderate MAPE), while Bodymedia Sensewear, Polar Loop, and Beurer AS80 showed a high MAPE up to 56% for all test conditions.Conclusion: In our study, most Wearables provide an acceptable level of validity for step counts at different constant and intermittent running velocities reflecting sports conditions. However, the covered distance, as well as the EE could not be assessed validly with the investigated Wearables. Consequently, covered distance and EE should not be monitored with the presented Wearables, in sport specific conditions

    High-intensity interval training improves VO2peak, maximal lactate accumulation, time trial and competition performance in 9–11-year-old swimmers

    Get PDF
    Training volume in swimming is usually very high when compared to the relatively short competition time. High-intensity interval training (HIIT) has been demonstrated to improve performance in a relatively short training period. The main purpose of the present study was to examine the effects of a 5-week HIIT versus high-volume training (HVT) in 9–11-year-old swimmers on competition performance, 100 and 2,000 m time (T100 m and T2,000 m), VO2peak and rate of maximal lactate accumulation (Lacmax). In a 5-week crossover study, 26 competitive swimmers with a mean (SD) age of 11.5 ± 1.4 years performed a training period of HIIT and HVT. Competition (P < 0.01; effect size = 0.48) and T2,000 m (P = 0.04; effect size = 0.21) performance increased following HIIT. No changes were found in T100 m (P = 0.20). Lacmax increased following HIIT (P < 0.01; effect size = 0.43) and decreased after HVT (P < 0.01; effect size = 0.51). VO2peak increased following both interventions (P < 0.05; effect sizes = 0.46–0.57). The increases in competition performance, T2,000 m, Lacmax and VO2peak following HIIT were achieved in significantly less training time (~2 h/week)
    corecore