140 research outputs found

    On the mechanisms governing gas penetration into a tokamak plasma during a massive gas injection

    Get PDF
    A new 1D radial fluid code, IMAGINE, is used to simulate the penetration of gas into a tokamak plasma during a massive gas injection (MGI). The main result is that the gas is in general strongly braked as it reaches the plasma, due to mechanisms related to charge exchange and (to a smaller extent) recombination. As a result, only a fraction of the gas penetrates into the plasma. Also, a shock wave is created in the gas which propagates away from the plasma, braking and compressing the incoming gas. Simulation results are quantitatively consistent, at least in terms of orders of magnitude, with experimental data for a D 2 MGI into a JET Ohmic plasma. Simulations of MGI into the background plasma surrounding a runaway electron beam show that if the background electron density is too high, the gas may not penetrate, suggesting a possible explanation for the recent results of Reux et al in JET (2015 Nucl. Fusion 55 093013)

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    Get PDF
    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM

    Expanding the clinical phenotype of individuals with a 3-bp in-frame deletion of the NF1 gene (c.2970_2972del): an update of genotype–phenotype correlation

    Get PDF
    Purpose: Neurofibromatosis type 1 (NF1) is characterized by a highly variable clinical presentation, but almost all NF1-affected adults present with cutaneous and/or subcutaneous neurofibromas. Exceptions are individuals heterozygous for the NF1 in-frame deletion, c.2970_2972del (p.Met992del), associated with a mild phenotype without any externally visible tumors. Methods: A total of 135 individuals from 103 unrelated families, all carrying the constitutional NF1 p.Met992del pathogenic variant and clinically assessed using the same standardized phenotypic checklist form, were included in this study. Results: None of the individuals had externally visible plexiform or histopathologically confirmed cutaneous or subcutaneous neurofibromas. We did not identify any complications, such as symptomatic optic pathway gliomas (OPGs) or symptomatic spinal neurofibromas; however, 4.8% of individuals had nonoptic brain tumors, mostly low-grade and asymptomatic, and 38.8% had cognitive impairment/learning disabilities. In an individual with the NF1 constitutional c.2970_2972del and three astrocytomas, we provided proof that all were NF1-associated tumors given loss of heterozygosity at three intragenic NF1 microsatellite markers and c.2970_297

    Overview of the JET results in support to ITER

    Get PDF

    Optimized phasing conditions to avoid edge mode excitation by ICRH antennas

    No full text
    An ion cyclotron resonance heating (ICRH) antenna system must launch radio frequency (RF) power with a wavenumber spectrum which maximizes the coupling to the plasma. It should also ensure good absorption while minimizing the wave interaction with the plasma edge. Such interactions lead to impurity release, whose effect has been measured far from the antenna location (Klepper et al. 2013; Wukitch et al. 2017; Perkins et al. 2019) and can involve the entire scrape-off layer. In the normal heating scenario, for which the frequency of the waves launched by the antenna is larger than the ion cyclotron frequency of the majority ions ω > ωci, maj, release of impurities due to ICRH can be affected by minimizing the lowSCOPUS: ar.jDecretOANoAutActifinfo:eu-repo/semantics/publishe

    The radio frequency heating of magnum-psi

    No full text

    Study of the ohmic losses of a traveling wave antenna section in view of application on DEMO

    No full text
    A multi-section Traveling Wave Antenna (TWA) is one of the presently proposed options for Ion Cyclotron Resonance Heating (ICRH) of DEMO. This option would reduce the antenna power density while enabling sufficient heating in low coupling situations by increasing the number of radiating straps. Such an antenna consists of several sections each fed in a resonant ring configuration. In order to guide future engineering requirements, a detailed computation of the ohmic losses due to finite conductivity of the antenna components of one TWA section is performed for different loading conditions. The geometry of the TWA section is compatible with the presently proposed layout of DEMO and is modeled by the finite element code Microwave Studio (MWS) taking into account the finite resistivity of its constituent materials. As MWS cannot handle plasma loading, it has been implemented in the code by a layer in front of the antenna with the real part of the permittivity of water and open boundary conditions to reproduce single-pass absorption conditions and capture the main antenna loading characteristics of a plasma. The loading conditions are then varied changing the distance between the antenna and this layer. An equivalent antenna resistance characterizing those ohmic losses as a function of frequency, material resistivity and loading has been computed. This resistance can be linked to the skin depth resistance and compared to the radiation resistance in order to assess the performance of the antenna for a given choice of material. These results are then extrapolated to a real plasma loading based on ANTITER results for different plasma profiles and water dielectric load distance.SCOPUS: cp.pDecretOANoAutActifinfo:eu-repo/semantics/publishe

    Analytical edge power loss at the lower hybrid resonance: ANTITER IV validation and application to ion cyclotron resonance heating systems

    No full text
    In the ion cyclotron range of frequency (ICRF), the presence of a lower hybrid (LH) resonance can appear in the edge of a tokamak plasma and lead to deleterious edge power depositions. An analytic formula for these losses is derived in the cold plasma approximation and for a slab geometry using an asymptotic approach and an analytical continuation near the LH resonance. The way to minimize these losses in a large machine like ITER is discussed. An internal verification between the power loss computed with the semi-analytical code ANTITER IV for ion cyclotron resonance heating (ICRH) and the analytic result is performed. This allows us to check the precision of the numerical integration of the singular set of cold plasma wave differential equations. The set of cold plasma equations used is general and can be applied in other parameters domain.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore