129 research outputs found

    Two-photon coherent control of femtosecond photoassociation

    Full text link
    Photoassociation with short laser pulses has been proposed as a technique to create ultracold ground state molecules. A broad-band excitation seems the natural choice to drive the series of excitation and deexcitation steps required to form a molecule in its vibronic ground state from two scattering atoms. First attempts at femtosecond photoassociation were, however, hampered by the requirement to eliminate the atomic excitation leading to trap depletion. On the other hand, molecular levels very close to the atomic transition are to be excited. The broad bandwidth of a femtosecond laser then appears to be rather an obstacle. To overcome the ostensible conflict of driving a narrow transition by a broad-band laser, we suggest a two-photon photoassociation scheme. In the weak-field regime, a spectral phase pattern can be employed to eliminate the atomic line. When the excitation is carried out by more than one photon, different pathways in the field can be interfered constructively or destructively. In the strong-field regime, a temporal phase can be applied to control dynamic Stark shifts. The atomic transition is suppressed by choosing a phase which keeps the levels out of resonance. We derive analytical solutions for atomic two-photon dark states in both the weak-field and strong-field regime. Two-photon excitation may thus pave the way toward coherent control of photoassociation. Ultimately, the success of such a scheme will depend on the details of the excited electronic states and transition dipole moments. We explore the possibility of two-photon femtosecond photoassociation for alkali and alkaline-earth metal dimers and present a detailed study for the example of calcium

    NIR Femtosecond Control of Resonance-Mediated Generation of Coherent Broadband UV Emission

    Full text link
    We use shaped near-infrared (NIR) pulses to control the generation of coherent broadband ultraviolet (UV) radiation in an atomic resonance-mediated (2+1) three-photon excitation. Experimental and theoretical results are presented for phase controlling the total emitted UV yield in atomic sodium (Na). Based on our confirmed understanding, we present a new simple scheme for producing shaped femtosecond pulses in the UV/VUV spectral range using the control over atomic resonance-mediated generation of third (or higher order) harmonic.Comment: 14 pages, 4 figure

    Transform-limited pulses are not optimal for resonant multiphoton transitions

    Full text link
    Maximizing nonlinear light-matter interactions is a primary motive for compressing laser pulses to achieve ultrashort transform limited pulses. Here we show how, by appropriately shaping the pulses, resonant multiphoton transitions can be enhanced significantly beyond the level achieved by maximizing the pulse's peak intensity. We demonstrate the counterintuitive nature of this effect with an experiment in a resonant two-photon absorption, in which, by selectively removing certain spectral bands, the peak intensity of the pulse is reduced by a factor of 40, yet the absorption rate is doubled. Furthermore, by suitably designing the spectral phase of the pulse, we increase the absorption rate by a factor of 7.Comment: 4 pages, 3 figure

    Shot noise limited characterization of femtosecond light pulses

    Full text link
    Probing the evolution of physical systems at the femto- or attosecond timescale with light requires accurate characterization of ultrashort optical pulses. The time profiles of such pulses are usually retrieved by methods utilizing optical nonlinearities, which require significant signal powers and operate in a limited spectral range\cite{Trebino_Review_of_Scientific_Instruments97,Walmsley_Review_09}. We present a linear self-referencing characterization technique based on time domain localization of the pulse spectral components, operated in the single-photon regime. Accurate timing of the spectral slices is achieved with standard single photon detectors, rendering the technique applicable in any spectral range from near infrared to deep UV. Using detection electronics with about 7070 ps response, we retrieve the temporal profile of a picowatt pulse train with ∼10\sim10 fs resolution, setting a new scale of sensitivity in ultrashort pulse characterization.Comment: Supplementary information contained in raw dat

    Photonics - An atomic dimmer switch

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62775/1/396217a0.pd

    Coherent control using adaptive learning algorithms

    Full text link
    We have constructed an automated learning apparatus to control quantum systems. By directing intense shaped ultrafast laser pulses into a variety of samples and using a measurement of the system as a feedback signal, we are able to reshape the laser pulses to direct the system into a desired state. The feedback signal is the input to an adaptive learning algorithm. This algorithm programs a computer-controlled, acousto-optic modulator pulse shaper. The learning algorithm generates new shaped laser pulses based on the success of previous pulses in achieving a predetermined goal.Comment: 19 pages (including 14 figures), REVTeX 3.1, updated conten

    Laser phase modulation approaches towards ensemble quantum computing

    Full text link
    Selective control of decoherence is demonstrated for a multilevel system by generalizing the instantaneous phase of any chirped pulse as individual terms of a Taylor series expansion. In the case of a simple two-level system, all odd terms in the series lead to population inversion while the even terms lead to self-induced transparency. These results also hold for multiphoton transitions that do not have any lower-order photon resonance or any intermediate virtual state dynamics within the laser pulse-width. Such results form the basis of a robustly implementable CNOT gate.Comment: 10 pages, 4 figures, PRL (accepted

    Ultrashort-pulse laser with an intracavity phase shaping element

    Get PDF
    A novel ultrashort-pulse laser cavity configuration that incorporates an intracavity deformable mirror as a phase control element is reported. A user-defined spectral phase relation of 0.7 radians relative shift could be produced at around 1035 nm. Phase shaping as well as pulse duration optimization was achieved via a computer-controlled feedback loop

    Problems and Aspects of Energy-Driven Wavefunction Collapse Models

    Full text link
    Four problematic circumstances are considered, involving models which describe dynamical wavefunction collapse toward energy eigenstates, for which it is shown that wavefunction collapse of macroscopic objects does not work properly. In one case, a common particle position measuring situation, the apparatus evolves to a superposition of macroscopically distinguishable states (does not collapse to one of them as it should) because each such particle/apparatus/environment state has precisely the same energy spectrum. Second, assuming an experiment takes place involving collapse to one of two possible outcomes which is permanently recorded, it is shown in general that this can only happen in the unlikely case that the two apparatus states corresponding to the two outcomes have disjoint energy spectra. Next, the progressive narrowing of the energy spectrum due to the collapse mechanism is considered. This has the effect of broadening the time evolution of objects as the universe evolves. Two examples, one involving a precessing spin, the other involving creation of an excited state followed by its decay, are presented in the form of paradoxes. In both examples, the microscopic behavior predicted by standard quantum theory is significantly altered under energy-driven collapse, but this alteration is not observed by an apparatus when it is included in the quantum description. The resolution involves recognition that the statevector describing the apparatus does not collapse, but evolves to a superposition of macroscopically different states.Comment: 17 page

    Stable mode-locked pulses from mid-infrared semiconductor lasers

    Get PDF
    We report the unequivocal demonstration of mid-infrared mode-locked pulses from a semiconductor laser. The train of short pulses was generated by actively modulating the current and hence the optical gain in a small section of an edge-emitting quantum cascade laser (QCL). Pulses with pulse duration at full-width-at-half-maximum of about 3 ps and energy of 0.5 pJ were characterized using a second-order interferometric autocorrelation technique based on a nonlinear quantum well infrared photodetector. The mode-locking dynamics in the QCLs was modelled and simulated based on Maxwell-Bloch equations in an open two-level system. We anticipate our results to be a significant step toward a compact, electrically-pumped source generating ultrashort light pulses in the mid-infrared and terahertz spectral ranges.Comment: 26 pages, 4 figure
    • …
    corecore