71 research outputs found

    Beyond the required LISA free-fall performance: new LISA pathfinder results down to 20  ΌHz

    Get PDF
    In the months since the publication of the first results, the noise performance of LISA Pathfinder has improved because of reduced Brownian noise due to the continued decrease in pressure around the test masses, from a better correction of noninertial effects, and from a better calibration of the electrostatic force actuation. In addition, the availability of numerous long noise measurement runs, during which no perturbation is purposely applied to the test masses, has allowed the measurement of noise with good statistics down to 20  ΌHz. The Letter presents the measured differential acceleration noise figure, which is at (1.74±0.05)  fm s^{-2}/sqrt[Hz] above 2 mHz and (6±1)×10  fm s^{-2}/sqrt[Hz] at 20  ΌHz, and discusses the physical sources for the measured noise. This performance provides an experimental benchmark demonstrating the ability to realize the low-frequency science potential of the LISA mission, recently selected by the European Space Agency

    Temperature stability in the sub-milliHertz band with LISA Pathfinder

    Get PDF
    LISA Pathfinder (LPF) was a technology pioneering mission designed to test key technologies required for gravitational wave detection in space. In the low frequency regime (milliHertz and below), where space-based gravitational wave observatories will operate, temperature fluctuations play a crucial role since they can couple into the interferometric measurement and the test masses’ free-fall accuracy in many ways. A dedicated temperature measurement subsystem, with noise levels in 10 ΌK Hz−1/2 down to 1 mHz was part of the diagnostics unit onboard LPF. In this paper we report on the temperature measurements throughout mission operations, characterize the thermal environment, estimate transfer functions between different locations, and report temperature stability (and its time evolution) at frequencies as low as 10 ΌHz, where typically values around 1 K Hz−1/2 were measured

    GRS vs. OMS Calibration in LISA Pathfinder Data Analysis

    Get PDF
    On board LISA Pathfinder spacecraft the test mass displacement along the main measurement axis is sensed in two different ways: optically and electrostatically. We have monitored the relative calibration between the two measurements during the mission science phase. The trend sensitivity of the relative calibration has been computed for different physical parameters, such as temperature, magnetic field, test mass bias voltage and current

    Gravitational Reference Sensor Front-End Electronics Simulator for LISA

    Get PDF
    At the ETH Zurich we are developing a modular simulator that provides a realistic simulation of the Front End Electronics (FEE) for LISA Gravitational Reference Sensor (GRS). It is based on the GRS FEE-simulator already implemented for LISA Pathfinder. It considers, in particular, the non-linearity and the critical details of hardware, such as the non-linear multiplicative noise caused by voltage reference instability, test mass charging and detailed actuation and sensing algorithms. We present the simulation modules, considering the above-mentioned features. Based on the ETH GRS FEE-simulator for LISA Pathfinder we aim to develop a modular simulator that provides a realistic simulation of GRS FEE for LISA

    Tilt-to-length coupling in LISA Pathfinder: a data analysis

    Get PDF
    We present a study of the tilt-to-length coupling noise during the LISA Pathfinder mission and how it depended on the system’s alignment. Tilt-to-length coupling noise is the unwanted coupling of angular and lateral spacecraft or test mass motion into the primary interferometric displacement readout. It was one of the major noise sources in the LISA Pathfinder mission and is likewise expected to be a primary noise source in LISA. We demonstrate here that a recently derived and published analytical model describes the dependency of the LISA Pathfinder tilt-to-length coupling noise on the alignment of the two freely falling test masses. This was verified with the data taken before and after the realignments performed in March (engineering days) and June 2016, and during a two-day experiment in February 2017 (long cross-talk experiment). The latter was performed with the explicit goal of testing the tilt-to-length coupling noise dependency on the test mass alignment. Using the analytical model, we show that all realignments performed during the mission were only partially successful and explain the reasons why. In addition to the analytical model, we computed another physical tilt-to-length coupling model via a minimizing routine making use of the long cross-talk experiment data. A similar approach could prove useful for the LISA mission

    Sensor noise in LISA Pathfinder: laser frequency noise and its coupling to the optical test mass readout

    Get PDF
    The LISA Pathfinder (LPF) mission successfully demonstrated the feasibility of the technology needed for the future space borne gravitational wave observatory LISA. A key subsystem under study was the laser interferometer, which measured the changes in relative distance in between two test masses (TMs). It achieved a sensitivity of 32.0 + 2.4 − 1.7     fm / √ Hz , which was significantly better than the prelaunch tests. This improved performance allowed direct observation of the influence of laser frequency noise in the readout. The differences in optical path lengths between the measurement and reference beams in the individual interferometers of our setup determined the level of this undesired readout noise. Here, we discuss the dedicated experiments performed on LPF to measure these differences with high precision. We reached differences in path length difference between ( 368 ± 5 )     ÎŒm and ( 329.6 ± 0.9 )     ÎŒm which are significantly below the required level of 1 mm or 1000     ÎŒm . These results are an important contribution to our understanding of the overall sensor performance. Moreover, we observed varying levels of laser frequency noise over the course of the mission. We provide evidence that these do not originate from the laser frequency stabilization scheme which worked as expected. Therefore, this frequency stabilization would be applicable to other missions with similar laser frequency stability requirements

    Precision charge control for isolated free-falling test masses: LISA pathfinder results

    Get PDF
    The LISA Pathfinder charge management device was responsible for neutralizing the cosmic-ray-induced electric charge that inevitably accumulated on the free-falling test masses at the heart of the experiment. We present measurements made on ground and in flight that quantify the performance of this contactless discharge system which was based on photoemission under UV illumination. In addition, a two-part simulation is described that was developed alongside the hardware. Modeling of the absorbed UV light within the Pathfinder sensor was carried out with the Geant4 software toolkit and a separate Matlab charge transfer model calculated the net photocurrent between the test masses and surrounding housing in the presence of AC and DC electric fields. We confront the results of these models with observations and draw conclusions for the design of discharge systems for future experiments like LISA that will also employ free-falling test masses
    • 

    corecore