7 research outputs found

    Translating modernist language: the case of Gertrude Stein’s repetition

    Get PDF
    The present dissertation offers a comparative analysis of the two translations into Spanish of Gertrude Stein’s The Making of Americans (1925). The following pages study the different translations of the last chapter of the novel, History of a Family’s Progress: the first translation done by Antolín-Rato (1974), and the second and last translation by Aragón (2005). The focus of this project will be centered in analyzing one of the most representative language experimentation techniques in expatriate modernist Gertrude Stein, the repetition. We will compare how both translators face the challenge of translating Stein’s repetitions and in so doing, which techniques they use.El presente Trabajo de Fin de Grado ofrece un análisis comparativo de las dos traducciones al español que existen de The Making of Americans (1925) de Gertrude Stein. A lo largo del presente trabajo se estudian las distintas traducciones del último capítulo del libro, History of a Family’s Progress. La primera traducción por AntolínRato (1974) y la segunda y última traducción hecha por Aragón (2005). El objetivo de esta investigación se centrará en analizar una de las técnicas de experimentación con el lenguaje más representativas de la modernista expatriada Gertrude Stein, la repetición. Se comparará cómo los traductores afrontan el reto de traducir la repetición de Stein, y qué técnicas de traducción utilizan para ello.Departamento de Filología InglesaGrado en Estudios Inglese

    Variability of PM10 in industrialized-urban areas. New coefficients to establish significant differences between sampling points

    Get PDF
    One of the main problems that arise in the assessment of air quality in an area is to estimate the number of representative sampling points of each microenvironment within it. We present a new model that reduces the variability and increases the quality of the comparison of the sampling points. The study is based on the comparison between a city in eastern Spain, Vila-real, a macro city in México, Monterrey and the Piemonte region regarding the assessment of PM10 in microenvironments. Vila-real is located in the province of Castellón. This province is a strategic area in the framework of European Union (EU) pollution control. On the other hand, Monterrey in México, located in the northern state of Nuevo León, has several problems with particulate material in the atmosphere produced by the extraction of building materials in the hill that surround the city. Finally, the Piemonte region, which is located in the north of Italy, has to be in consideration due to higher concentrations of PM10 in the Po river basin. In the case of Vila-real the PM10 samples were collected by a medium volume sampler according to European regulations. Particle concentration levels were determined gravimetrically (EN 12341:1999). In the case of Monterrey the PM10 concentrations were determined by Beta Ray Attenuation according to US-EPA regulations. In the Piemonte region, the average concentration of PM10 was also obtained by means of the Beta Ray Attenuation as well as using gravimetric instruments. The methodology carried out in this paper is a useful tool for developing future Air Quality Plans in other industrialised areas

    Reciprocal regulation between the molecular clock and kidney injury

    Get PDF
    Molecular clock; Kidney injuryRellotge molecular; Lesió renalReloj molecular; Lesión renalTubulointerstitial fibrosis is the common pathological substrate for many etiologies leading to chronic kidney disease. Although perturbations in the circadian rhythm have been associated with renal disease, the role of the molecular clock in the pathogenesis of fibrosis remains incompletely understood. We investigated the relationship between the molecular clock and renal damage in experimental models of injury and fibrosis (unilateral ureteral obstruction, folic acid, and adenine nephrotoxicity), using genetically modified mice with selective deficiencies of the clock components Bmal1, Clock, and Cry. We found that the molecular clock pathway was enriched in damaged tubular epithelial cells with marked metabolic alterations. In human tubular epithelial cells, TGFβ significantly altered the expression of clock components. Although Clock played a role in the macrophage-mediated inflammatory response, the combined absence of Cry1 and Cry2 was critical for the recruitment of neutrophils, correlating with a worsening of fibrosis and with a major shift in the expression of metabolism-related genes. These results support that renal damage disrupts the kidney peripheral molecular clock, which in turn promotes metabolic derangement linked to inflammatory and fibrotic responses.This work was supported by grants from the Ministerio de Ciencia e Innovación PID2019-104233RB-100/AEI/10.13039/501100011033 (S Lamas), Instituto de Salud Carlos III REDinREN RD12/0021/0009 and RD16/0009/0016 (S Lamas), Comunidad de Madrid “NOVELREN” B2017/BMD-3751 and INNOREN P2022/BMD-7221 (S Lamas and C Barbas), and Fundación Renal “Iñigo Alvarez de Toledo” (S Lamas), all from Spain. C Rey-Serra has been the recipient of an FPI research training contract from the Spanish Research State Agency (BES-2016-076735). The CBMSO receives institutional support from Fundación “Ramón Areces.” We acknowledge the laboratories of Fernando Rodríguez Pascual (CBMSO) for helping with plasmid constructions and of Marta Ruiz‐Ortega at the Fundación Jiménez Díaz for helping with immunohistochemistry. We also acknowledge the help of the following facilities of the CBMSO: animal housing, flow cytometry, and confocal and electron microscopy

    Reciprocal regulation between the molecular clock and kidney injury

    Get PDF
    Tubulointerstitial fibrosis is the common pathological substrate for many etiologies leading to chronic kidney disease. Although perturbations in the circadian rhythm have been associated with renal disease, the role of the molecular clock in the pathogenesis of fibrosis remains incompletely understood. We investigated the relationship between the molecular clock and renal damage in experimental models of injury and fibrosis (unilateral ureteral obstruction, folic acid, and adenine nephrotoxicity), using genetically modified mice with selective deficiencies of the clock components Bmal1, Clock, and Cry. We found that the molecular clock pathway was enriched in damaged tubular epithelial cells with marked metabolic alterations. In human tubular epithelial cells, TGFβ significantly altered the expression of clock components. Although Clock played a role in the macrophage-mediated inflammatory response, the combined absence of Cry1 and Cry2 was critical for the recruitment of neutrophils, correlating with a worsening of fibrosis and with a major shift in the expression of metabolism-related genes. These results support that renal damage disrupts the kidney peripheral molecular clock, which in turn promotes metabolic derangement linked to inflammatory and fibrotic responses.This work was supported by grants from the Ministerio de Ciencia e Innovación PID2019-104233RB-100/AEI/10.13039/501100011033 (S Lamas), Instituto de Salud Carlos III REDinREN RD12/0021/0009 and RD16/0009/0016 (S Lamas), Comunidad de Madrid “NOVELREN” B2017/BMD-3751 and INNOREN P2022/BMD-7221 (S Lamas and C Barbas), and Fundación Renal “Iñigo Alvarez de Toledo” (S Lamas), all from Spain. C Rey-Serra has been the recipient of an FPI research training contract from the Spanish Research State Agency (BES-2016-076735). The CBMSO receives institutional support from Fundación “Ramón Areces.

    Influence of cation and anion type on the formation of the electroactive β-phase and thermal and dynamic mechanical properties of poly(vinylidene fluoride)/ionic liquids bends

    No full text
    Films based on poly(vinylidene fluoride) (PVDF) blended with ionic liquids (ILs) comprising different cations and anions were developed to investigate the IL influence on the resulting PVDF crystalline phase. Blends with 25 wt % IL content were produced by solvent casting followed by solvent evaporation at 210 °C in an air oven. Five different ILs containing the same cation 1-ethyl-3-methylimidazolium [Emim] and five ILs containing the same anion bis(trifluoromethylsulfonyl)imide [TFSI] were selected. The formation of the different phases and the resulting thermal and dynamic mechanical properties were studied by Fourier transform infrared spectroscopy, differential scanning calorimetry, and dynamic mechanical analysis. The incorporation of [Emim]-based ILs successfully directs the PVDF crystallization from the nonpolar α-phase toward the electroactive and highly polar β-phase. On the contrary, blends containing [TFSI] as a common anion yield a mixture of α and β phases. Overall, the induced β-phase ranges between 14 and 95% depending on the incorporated IL type. Interestingly, 1-ethyl-3-methylimidazolium chloride [Emim][Cl] is the most effective IL among the studied ones to significantly enhance the β-phase content, showing also a marked nucleating effect. The results suggest that ions favorably interact with PVDF chains and are located occupying the amorphous interlamellar PVDF regions. Furthermore, the studied ILs act as plasticizers, yielding lower glass-transition temperatures of the amorphous phase and decreasing mechanical storage modulus at room temperature.This work was supported by the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Funding UID/FIS/04650/2019. The authors thank FEDER funds through the COMPETE 2020 Programme and National Funds through FCT under the projects PTDC/BTM-MAT/28237/2017, PTDC/EEI-SII/5582/2014, and PTDC/FIS-MAC/28157/2017. D.M.C. and C.M.C. also acknowledge the FCT for grants SFRH/BPD/121526/2016 and SFRH/BPD/112547/2015, respectively. The financial supports from the Spanish Ministry of Economy and Competitiveness (MINECO) through the project MAT2016-76039-C4-(1 and 3)-R (AEI/FEDER, UE) (including the FEDER financial support) and from the Basque Government Industry and Education Departments under the ELKARTEK, HAZITEK, and PIBA (PIBA-2018-06) programs, respectively, are acknowledged. CIBER-BBN is an initiative funded by the VI National R&D&I Plan 2008–2011, Iniciativa Ingenio 2010, Consolider Program. CIBER Actions are financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund

    Molecular relaxation and ionic conductivity of ionic liquids confined in a poly(vinylidene fluoride) polymer matrix: Influence of anion and cation type

    No full text
    Blends of poly(vinylidene fluoride) (PVDF) and ionic liquids (ILs) with different cations and anions have been prepared by solvent casting. The IL content was the same in all blends of the series. Molecular relaxation and ionic conductivity have been systematically studied by broadband dielectric relaxation spectroscopy (BDS) in wide frequency (0.1 Hz-1 MHz) and temperature ranges (-120 to 150 degrees C) and the results have been analysed in terms of dielectric modulus M*(omega) and conductivity sigma*(omega) formalisms. The main relaxation process (beta-relaxation) of the amorphous phase of the blend that integrates amorphous polymer chain segments and IL molecules was observed. Significant differences in the Vogel-Fulcher-Tammann (VFT) fitting parameters in the PVDF/IL blends with different anions were detected. The conductivity sigma*(omega) formalism shows that it is strongly dependent on the miscibility of the IL with the amorphous PVDF chains and the type of anion. The Barton-Namikawa-Nakajima (BNN) relation sigma(0) similar to omega(c) is fulfilled for all PVDF/IL blends except for that containing 1-ethyl-3-methylimidazolium hydrogen sulfate, [Emim][HSO4]. The activation energy of the ac conductivity, calculated according to the Dyre model, decreases for all PVDF/IL blends with respect to neat PVDF. The structure of the cation of the IL has been found to exert less influence on the dielectric and conductivity properties of the blends.This work was supported by the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Funding UID/FIS/04650/2013 and the Associated Laboratory Research Unit for Green Chemistry, Technologies and Clean Processes, LAQV (financed by national funds from FCT/MEC, UID/QUI/50006/2013 and ERDF under the PT2020, POCI-01-0145-FEDER-007265). The authors thank FEDER funds through the COMPETE 2020 Programme and National Funds through FCT under the projects PTDC/CTM-ENE/5387/2014, PTDC/EEI-SII/5582/2014 and PTDC/FIS-MAC/28157/2017. D.M.C., C.M.C., J.M.S center dot S.E. and P.M.R. also thank to the FCT for grants SFRH/BPD/121526/2016 and SFRH/BPD/112547/2015, and Investigator FCT contracts IF/00355/2012 and IF/0621/2015, respectively. Financial support from the Spanish Ministry of Economy and Competitiveness (MINECO) through the project MAT2016-76039-C4-(1 and 3)-R (AEI/FEDER, UE) (including the FEDER financial support) and from the Basque Government Industry and Education Departments under the ELKARTEK, HAZITEK and PIBA (PIBA-2018-06) programs, respectively, are acknowledged. CIBER-BBN is an initiative funded by the VI National R&D&I Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program. CIBER Actions are financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund
    corecore