6,272 research outputs found

    Toward cognitive digital twins using a BIM-GIS asset management system for a diffused university

    Get PDF
    The integrated use of building information modeling (BIM) and geographic information system (GIS) is promising for the development of asset management systems (AMSs) for operation and maintenance (O & M) in smart university campuses. The combination of BIM-GIS with cognitive digital twins (CDTs) can further facilitate the management of complex systems such as university building stock. CDTs enable buildings to behave as autonomous entities, dynamically reacting to environmental changes. Timely decisions based on the actual conditions of buildings and surroundings can be provided, both in emergency scenarios or when optimized and adaptive performances are required. The research aims to develop a BIM-GIS-based AMS for improving user experience and enabling the optimal use of resources in the O & M phase of an Italian university. Campuses are complex assets, mainly diffused with buildings spread across the territory, managed with still document-based and fragmented databases handled by several subjects. This results in incomplete and asymmetrical information, often leading to ineffective and untimely decisions. The paper presents a methodology for the development of a BIM-GIS web-based platform (i.e., AMS-app) providing the real-time visualization of the asset in an interactive 3D map connected to analytical dashboards for management support. Two buildings of the University of Turin are adopted as demonstrators, illustrating the development of an easily accessible, centralized database by integrating spatial and functional data, useful also to develop future CDTs. As a first attempt to show the AMS app potential, crowd simulations have been conducted to understand the buildings' actual level of safety in case of fire emergency and demonstrate how CDTs could improve it. The identification of data needed, also gathered through the future implementation of suitable sensors and Internet of Things networks, is the core issue together with the definition of effective asset visualization and monitoring methods. Future developments will explore the integration of artificial intelligence and immersive technologies to enable space use optimization and real-time wayfinding during evacuation, exploiting digital tools to alert and drive users or authorities for safety improvement. The ability to easily optimize the paths with respect to the actual occupancy and conditions of both the asset and surroundings will be enabled

    3-Tesla MR spectroscopy in patients subjected to bone marrow transplantation: clinical correlations.

    Get PDF
    PURPOSE: This study evaluated the usefulness of 3-Tesla magnetic resonance (MR) spectroscopy in patients with non-Hodgkin's lymphoma (NHL) undergoing bone marrow transplantation (BMT). MATERIALS AND METHODS: Twelve NHL patients who were candidates for BMT underwent three MR examinations of the lumbosacral spine: before ablative therapy for BMT, 15±4 days and 54±24 days after BMT. The MR study was supplemented by spectroscopic analysis. The lipid content was calculated and expressed as a percentage of lipid signal intensity relative to total signal intensity [fat fraction (FF)]. RESULTS: In the first MR study, the FF was 62.5±7%, in the second it was 70.75±5% and in the third it was 75±1%. We observed a statistically significant difference between FF values calculated at the various MR studies (p=0.02) and between red blood cell count (p=0.017), platelet count (p=0.003) and haematocrit (p<0.001) at the three MR studies. FF had a statistically significant correlation with the number of circulating platelets (p<0.01) CONCLUSIONS: MR spectroscopy of the bone marrow of NHL patients undergoing BMT is noninvasive and highly sensitive for characterising and monitoring bone marrow after BMT

    Static and dynamic evaluation of pelvic floor disorders with an open low-field tilting magnet.

    Get PDF
    AIM: To assess the feasibility of magnetic resonance defaecography (MRD) in pelvic floor disorders using an open tilting magnet with a 0.25 T static field and to compare the results obtained from the same patient both in supine and orthostatic positions. MATERIALS AND METHODS: From May 2010 to November 2011, 49 symptomatic female subjects (mean age 43.5 years) were enrolled. All the patients underwent MRD in the supine and orthostatic positions using three-dimensional (3D) hybrid contrast-enhanced (HYCE) sequences and dynamic gradient echo (GE) T1-weighted sequences. All the patients underwent conventional defaecography (CD) to correlate both results. Two radiologists evaluated the examinations; inter and intra-observer concordance was measured. The results obtained in the two positions were compared between them and with CD. RESULTS: The comparison between CD and MRD found statistically significant differences in the evaluation of anterior and posterior rectocoele during defaecation in both positions and of rectal prolapse under the pubo-coccygeal line (PCL) during evacuation, only in the supine position (versus MRD orthostatic: rectal prolapse p < 0.0001; anterior rectocoele p < 0.001; posterior rectocoele p = 0.008; versus CD: rectal prolapse p < 0.0001; anterior rectocoele p < 0.001; posterior rectocoele p = 0.01). The value of intra-observer intra-class correlation coefficient (ICC) ranged from good to excellent; the interobserver ICC from moderate to excellent. CONCLUSION: MRD is feasible with an open low-field tilting magnet, and it is more accurate in the orthostatic position than in the supine position to evaluate pelvic floor disorders

    Inclusion of new 5-fluorouracil amphiphilic derivatives in liposome formulation for cancer treatment

    Get PDF
    Correction for 'Inclusion of new 5-fluorouracil amphiphilic derivatives in liposome formulation for cancer treatment' by M. Petaccia et al., Med. Chem. Commun., 2015, 6, 1639–1642

    Differences between Proximal versus Distal Intraorbital Optic Nerve Diffusion Tensor Magnetic Resonance Imaging Properties in Glaucoma Patients

    Get PDF
    Purpose. To analyze in vivo the diffusion tensor magnetic resonance imaging (DT-MRI) properties of the intraorbital optic nerve at two different levels: Proximal to the optic nerve head (ONH) and distal to the ONH at the level of the orbital apex in glaucoma patients. Methods. Twenty-four patients with primary open-angle glaucoma were examined. The categorization into early and severe glaucoma was performed by Hodapp's classification. Fifteen healthy individuals served as controls. DT-MRI was performed with a 3T-MR unit. Results. At early stage mean diffusivity (MD) values were higher at the proximal site with respect to the distal site. On the contrary, a decrease in fractional anisotropy (FA) was observed only relative to patient stage, independent of optic nerve site. Moreover, at early disease stage an increase in overall diffusivities, was evident at the proximal site, whereas at the distal site a decrease of the largest diffusivity and an increase in both the intermediate and smallest diffusivities were observed. FA and MD measured at the proximal site, had, respectively, the highest sensitivity and specificity in discriminating between healthy and glaucomatous eyes. Conclusions. Our study represents the first attempt to evaluate in vivo fiber integrity changes along the optic nerve with DT-MRI. Optic nerve degeneration appears to be a process that affects differently the proximal and the distal segments of the optic nerve. The complementary high sensitivity of FA with the high specificity of MD at the proximal site may provide reliable indexes for the identification of glaucomatous patients at early stages

    R&D for new silicon pixel sensors for the High Luminosity phase of the CMS experiment at LHC

    Get PDF
    The High Luminosity upgrade of the CERN LHC collider (HLLHC) demands a new high-radiation–tolerant solid-state pixel sensor capable of surviving fluencies up to a few 1016 neq/cm2 at ∼ 3 cm from the interaction point. To this extent the INFN ATLAS-CMS joint research activity, in collaboration with Fondazione Bruno Kessler (FBK), is aiming at the development of thin n-in-p–type pixel sensors for the HL-LHC. The R&D covers both planar and single-sided 3D columnar pixel devices made with the Si-Si Direct Wafer Bonding technique, which allows for the production of sensors with 100 μm and 130 μm active thickness for planar sensors, and 130 μm for 3D sensors, the thinnest ones ever produced so far. The first prototypes of hybrid modules, bump-bonded to the present CMS readout chip, have been tested on beam. The first results on their performance before and after irradiation are presented

    The INFN R&D: New pixel detector for the High Luminosity upgrade of the LHC

    Get PDF
    The High Luminosity upgrade of the CERN-LHC (HL-LHC) demands for a new high-radiation tolerant solid-state pixel sensor capable of surviving fluencies up to a few 1016 particles/cm2 at ∼3 cm from the interaction point. To this extent the INFN ATLAS-CMS joint research activity, in collaboration with Fondazione Bruno Kessler-FBK, is aiming at the development of thin n-in-p type pixel sensors for the HL-LHC. The R&D covers both planar and single-sided 3D columnar pixel devices made with the Si-Si Direct Wafer Bonding technique, which allows for the production of sensors with 100 μm and 130 μm active thickness for planar sensors, and 130 μm for 3D sensors, the thinnest ones ever produced so far. The first prototypes of hybrid modules bump-bonded to the present CMS and ATLAS readout chips have been tested in beam tests. The preliminary results on their performance before and after irradiation are presented

    Search for Branons at LEP

    Full text link
    We search, in the context of extra-dimension scenarios, for the possible existence of brane fluctuations, called branons. Events with a single photon or a single Z-boson and missing energy and momentum collected with the L3 detector in e^+ e^- collisions at centre-of-mass energies sqrt{s}=189-209$ GeV are analysed. No excess over the Standard Model expectations is found and a lower limit at 95% confidence level of 103 GeV is derived for the mass of branons, for a scenario with small brane tensions. Alternatively, under the assumption of a light branon, brane tensions below 180 GeV are excluded
    • …
    corecore