12 research outputs found

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    What drove giant panda Ailuropoda melanoleuca expansion in the Qinling Mountains? An analysis comparing the influence of climate, bamboo, and various landscape variables in the past decade

    No full text
    The role of climate and aclimatic factors on species distribution has been debated widely among ecologists and conservationists. It is often difficult to attribute empirically observed changes in species distribution to climatic or aclimatic factors. Giant pandas ( A. melanoleuca ) provide a rare opportunity to study the impact of climatic and aclimatic factors, particularly the food sources on predicting the distribution changes in the recent decade, as well-documented information on both giant panda and bamboos exist. Here, we ask how the climate metrics compare to the bamboo suitability metric in predicting the giant panda occurrences outside the central areas in the Qinling Mountains during the past decade. We also seek to understand the relative importance of different landscape-level variables in predicting giant panda emigration outside areas of high giant panda densities. We utilize data from the 3rd and 4th National Giant Panda Surveys (NGPSs) for our analysis. We evaluate the performance of the species distribution models trained by climate, bamboo suitability, and the combination of the two. We then at 4 spatial scales identify the optimal models for predicting giant panda emigration between the 3rd and the 4th NGPSs using a list of landscape-level environmental variables. Our results show that the models utilizing the bamboo suitability alone consistently outperform the bioclimatic and the combined models; the distance to high giant panda density core area and bamboo suitability show high importance in predicting expansion probability across all four scales. Our results also suggest that the extrapolated bamboo distribution using bamboo occurrence data can provide a practical and more reliable alternative to predict potential expansion and emigration of giant panda along the range edge. It suggests that restoring bamboo forests within the vicinity of high giant panda density areas is likely a more reliable strategy for supporting shifting giant panda populations

    Short-term effects of GPS collars on the activity, behavior, and adrenal response of scimitar-horned oryx (Oryx dammah).

    No full text
    GPS collars have revolutionized the field of animal ecology, providing detailed information on animal movement and the habitats necessary for species survival. GPS collars also have the potential to cause adverse effects ranging from mild irritation to severe tissue damage, reduced fitness, and death. The impact of GPS collars on the behavior, stress, or activity, however, have rarely been tested on study species prior to release. The objective of our study was to provide a comprehensive assessment of the short-term effects of GPS collars fitted on scimitar-horned oryx (Oryx dammah), an extinct-in-the-wild antelope once widely distributed across Sahelian grasslands in North Africa. We conducted behavioral observations, assessed fecal glucocorticoid metabolites (FGM), and evaluated high-resolution data from tri-axial accelerometers. Using a series of datasets and methodologies, we illustrate clear but short-term effects to animals fitted with GPS collars from two separate manufacturers (Advanced Telemetry Systems-G2110E; Vectronic Aerospace-Vertex Plus). Behavioral observations highlighted a significant increase in the amount of headshaking from pre-treatment levels, returning below baseline levels during the post-treatment period (>3 days post-collaring). Similarly, FGM concentrations increased after GPS collars were fitted on animals but returned to pre-collaring levels within 5 days of collaring. Lastly, tri-axial accelerometers, collecting data at eight positions per second, indicated a > 480 percent increase in the amount of hourly headshaking immediately after collaring. This post-collaring increase in headshaking was estimated to decline in magnitude within 4 hours after GPS collar fitting. These effects constitute a handling and/or habituation response (model dependent), with animals showing short-term responses in activity, behavior, and stress that dissipated within several hours to several days of being fitted with GPS collars. Importantly, none of our analyses indicated any long-term effects that would have more pressing animal welfare concerns

    Effects of body size on estimation of mammalian area requirements

    Get PDF
    Accurately quantifying species’ area requirements is a prerequisite for effective area-based conservation. This typically involves collecting tracking data on species of interest and then conducting home-range analyses. Problematically, autocorrelation in tracking data can result in space needs being severely underestimated. Based on the previous work, we hypothesized the magnitude of underestimation varies with body mass, a relationship that could have serious conservation implications. To evaluate this hypothesis for terrestrial mammals, we estimated home-range areas with global positioning system (GPS) locations from 757 individuals across 61 globally distributed mammalian species with body masses ranging from 0.4 to 4000 kg. We then applied block cross-validation to quantify bias in empirical home-range estimates. Area requirements of mammals 1, meaning the scaling of the relationship changed substantially at the upper end of the mass spectrum.publishedVersio

    Effects of body size on estimation of mammalian area requirements

    Get PDF
    Accurately quantifying species’ area requirements is a prerequisite for effective area-based conservation. This typically involves collecting tracking data on species of interest and then conducting home-range analyses. Problematically, autocorrelation in tracking data can result in space needs being severely underestimated. Based on the previous work, we hypothesized the magnitude of underestimation varies with body mass, a relationship that could have serious conservation implications. To evaluate this hypothesis for terrestrial mammals, we estimated home-range areas with global positioning system (GPS) locations from 757 individuals across 61 globally distributed mammalian species with body masses ranging from 0.4 to 4000 kg. We then applied block cross-validation to quantify bias in empirical home-range estimates. Area requirements of mammals 1, meaning the scaling of the relationship changed substantially at the upper end of the mass spectrum

    Effects of body size on estimation of mammalian area requirements

    Get PDF
    Accurately quantifying species' area requirements is a prerequisite for effective area-based conservation. This typically involves collecting tracking data on species of interest and then conducting home-range analyses. Problematically, autocorrelation in tracking data can result in space needs being severely underestimated. Based on the previous work, we hypothesized the magnitude of underestimation varies with body mass, a relationship that could have serious conservation implications. To evaluate this hypothesis for terrestrial mammals, we estimated home-range areas with global positioning system (GPS) locations from 757 individuals across 61 globally distributed mammalian species with body masses ranging from 0.4 to 4000 kg. We then applied block cross-validation to quantify bias in empirical home-range estimates. Area requirements of mammals 1, meaning the scaling of the relationship changed substantially at the upper end of the mass spectrum
    corecore