61 research outputs found

    Scoring dynamics across professional team sports: tempo, balance and predictability

    Get PDF
    Despite growing interest in quantifying and modeling the scoring dynamics within professional sports games, relative little is known about what patterns or principles, if any, cut across different sports. Using a comprehensive data set of scoring events in nearly a dozen consecutive seasons of college and professional (American) football, professional hockey, and professional basketball, we identify several common patterns in scoring dynamics. Across these sports, scoring tempo---when scoring events occur---closely follows a common Poisson process, with a sport-specific rate. Similarly, scoring balance---how often a team wins an event---follows a common Bernoulli process, with a parameter that effectively varies with the size of the lead. Combining these processes within a generative model of gameplay, we find they both reproduce the observed dynamics in all four sports and accurately predict game outcomes. These results demonstrate common dynamical patterns underlying within-game scoring dynamics across professional team sports, and suggest specific mechanisms for driving them. We close with a brief discussion of the implications of our results for several popular hypotheses about sports dynamics.Comment: 18 pages, 8 figures, 4 tables, 2 appendice

    Detecting Friendship Within Dynamic Online Interaction Networks

    Full text link
    In many complex social systems, the timing and frequency of interactions between individuals are observable but friendship ties are hidden. Recovering these hidden ties, particularly for casual users who are relatively less active, would enable a wide variety of friendship-aware applications in domains where labeled data are often unavailable, including online advertising and national security. Here, we investigate the accuracy of multiple statistical features, based either purely on temporal interaction patterns or on the cooperative nature of the interactions, for automatically extracting latent social ties. Using self-reported friendship and non-friendship labels derived from an anonymous online survey, we learn highly accurate predictors for recovering hidden friendships within a massive online data set encompassing 18 billion interactions among 17 million individuals of the popular online game Halo: Reach. We find that the accuracy of many features improves as more data accumulates, and cooperative features are generally reliable. However, periodicities in interaction time series are sufficient to correctly classify 95% of ties, even for casual users. These results clarify the nature of friendship in online social environments and suggest new opportunities and new privacy concerns for friendship-aware applications that do not require the disclosure of private friendship information.Comment: To Appear at the 7th International AAAI Conference on Weblogs and Social Media (ICWSM '13), 11 pages, 1 table, 6 figure

    Heat-Labile Enterotoxin: Beyond GM1 Binding

    Get PDF
    Enterotoxigenic Escherichia coli (ETEC) is a significant source of morbidity and mortality worldwide. One major virulence factor released by ETEC is the heat-labile enterotoxin LT, which is structurally and functionally similar to cholera toxin. LT consists of five B subunits carrying a single catalytically active A subunit. LTB binds the monosialoganglioside GM1, the toxin’s host receptor, but interactions with A-type blood sugars and E. coli lipopolysaccharide have also been identified within the past decade. Here, we review the regulation, assembly, and binding properties of the LT B-subunit pentamer and discuss the possible roles of its numerous molecular interactions

    Crossed-Field Sampling of Picosecond Optical Signals

    No full text
    127 p.Thesis (Ph.D.)--University of Illinois at Urbana-Champaign, 1978.U of I OnlyRestricted to the U of I community idenfinitely during batch ingest of legacy ETD

    Two-way TCP Connections: Old Problem, New Insight

    No full text
    International audienceMany papers explain the drop of download performance when two TCP connections in opposite directions share a common bottleneck link by ACK compression, the phenomenon in which download ACKs arrive in bursts so that TCP self clocking breaks. Efficient mechanisms to cope with the performance problem exist and we do not consider proposing yet another solution. We rather thoroughly analyze the interactions between connections and show that actually ACK compression only arises in a perfectly symmetrical setup and it has little impact on performance. We provide a different explanation of the interactions---data pendulum, a core phenomenon that we analyze in this paper. In the data pendulum effect, data and ACK segments alternately fill only one of the link buffers (on the upload or download side) at a time, but almost never both of them. We analyze the effect in the case in which buffers are structured as arrays of bytes and derive an expression for the ratio between the download and upload throughput. Simulation results and measurements confirm our analysis and show how appropriate buffer sizing alleviates performance degradation. We also consider the case of buffers structured as arrays of packets and show that it amplifies the effects of data pendulum

    Two-way TCP connections

    No full text
    • …
    corecore