65 research outputs found
Complement System Part I ĂąâŹâ Molecular Mechanisms of Activation and Regulation
Complement is a complex innate immune surveillance system, playing a key role in defense against pathogens and in host homeostasis. The complement system is initiated by conformational changes in recognition molecular complexes upon sensing danger signals. The subsequent cascade of enzymatic reactions is tightly regulated to assure that complement is activated only at specific locations requiring defense against pathogens, thus avoiding host tissue damage. Here we discuss the recent advances describing the molecular and structural basis of activation and regulation of the complement pathways and their implication on physiology and pathology. This article will review the mechanisms of activation of alternative, classical and lectin pathways, the formation of C3 and C5 convertases, the action of anaphylatoxins and the membrane attack complex. We will also discuss the importance of structure-function relationships using the example of atypical hemolytic uremic syndrome. Lastly we will discuss the development and benefits of therapies using complement inhibitors
Complement System Part II: Role in Immunity
International audienceThe complement system has been considered for a long time as a simple lytic cascade, aimed to kill bacteria infecting the host organism. Nowadays, this vision has changed and it is well accepted that complement is a complex innate immune surveillance system, playing a key role in host homeostasis, inflammation, and in the defense against pathogens. This review discusses recent advances in the understanding of the role of complement in physiology and pathology. It starts with a description of complement contribution to the normal physiology (homeostasis) of a healthy organism, including the silent clearance of apoptotic cells and maintenance of cell survival. In pathology, complement can be a friend or a foe. It acts as a friend in the defense against pathogens, by inducing opsonization and a direct killing by C5bâ9 membrane attack complex and by triggering inflammatory responses with the anaphylatoxins C3a and C5a. Opsonization plays also a major role in the mounting of an adaptive immune response, involving antigen presenting cells, T-, and B-lymphocytes. Nevertheless, it can be also an enemy, when pathogens hijack complement regulators to protect themselves from the immune system. Inadequate complement activation becomes a disease cause, as in atypical hemolytic uremic syndrome, C3 glomerulopathies, and systemic lupus erythematosus. Age-related macular degeneration and cancer will be described as examples showing that complement contributes to a large variety of conditions, far exceeding the classical examples of diseases associated with complement deficiencies. Finally, we discuss complement as a therapeutic target
Heme Drives Susceptibility of Glomerular Endothelium to Complement Overactivation Due to Inefficient Upregulation of Heme Oxygenase-1
Atypical hemolytic uremic syndrome (aHUS) is a severe disease characterized by microvascular endothelial cell (EC) lesions leading to thrombi formation, mechanical hemolysis and organ failure, predominantly renal. Complement system overactivation is a hallmark of aHUS. To investigate this selective susceptibility of the microvascular renal endothelium to complement attack and thrombotic microangiopathic lesions, we compared complement and cyto-protection markers on EC, from different vascular beds, in in vitro and in vivo models as well as in patients. No difference was observed for complement deposits or expression of complement and coagulation regulators between macrovascular and microvascular EC, either at resting state or after inflammatory challenge. After prolonged exposure to hemolysis-derived heme, higher C3 deposits were found on glomerular EC, in vitro and in vivo, compared with other EC in culture and in mice organs (liver, skin, brain, lungs and heart). This could be explained by a reduced complement regulation capacity due to weaker binding of Factor H and inefficient upregulation of thrombomodulin (TM). Microvascular EC also failed to upregulate the cytoprotective heme-degrading enzyme heme-oxygenase 1 (HO-1), normally induced by hemolysis products. Only HUVEC (Human Umbilical Vein EC) developed adaptation to heme, which was lost after inhibition of HO-1 activity. Interestingly, the expression of KLF2 and KLF4âknown transcription factors of TM, also described as possible transcription modulators of HO-1- was weaker in micro than macrovascular EC under hemolytic conditions. Our results show that the microvascular EC, and especially glomerular EC, fail to adapt to the stress imposed by hemolysis and acquire a pro-coagulant and complement-activating phenotype. Together, these findings indicate that the vulnerability of glomerular EC to hemolysis is a key factor in aHUS, amplifying complement overactivation and thrombotic microangiopathic lesions
A Single-Domain Antibody Targeting Complement Component C5 Acts as a Selective Inhibitor of the Terminal Pathway of the Complement System and Thus Functionally Mimicks the C-Terminal Domain of the Staphylococcus aureus SSL7 Protein
The complement system is an efficient anti-microbial effector mechanism. On the other hand abnormal complement activation is involved in the pathogenesis of multiple inflammatory and hemolytic diseases. As general inhibition of the complement system may jeopardize patient health due to increased susceptibility to infections, the development of pathway-specific complement therapeutics has been a long-lasting goal over the last decades. In particular, pathogen mimicry has been considered as a promising approach for the design of selective anti-complement drugs. The C-terminal domain of staphylococcal superantigen-like protein 7 (SSL7), a protein secreted by Staphylococcus aureus, was recently found to be a specific inhibitor of the terminal pathway of the complement system, providing selective inhibition of cell lysis mediated by the membrane attack complex (MAC). We describe here the selection by phage display of a humanized single-domain antibody (sdAb) mimicking the C-terminal domain of SSL7. The antibody, called sdAb_E4, binds complement C5 with an affinity in the low micromolar range. Furthermore, sdAb_E4 induces selective inhibition of MAC-mediated lysis, allowing inhibition of red blood cell hemolysis and inhibition of complement deposition on apopto-necrotic cells, while maintaining efficient bactericidal activity of the complement terminal pathway. Finally, we present preliminary results indicating that sdAb_E4 may also be efficient in inhibiting hemolysis of erythrocytes from patients with paroxysmal nocturnal hemoglobinuria. Our data provide a proof of concept for the design of a selective MAC inhibitor capable of retaining complement bacteriolytic activity and this study opens up promising perspectives for the development of an sdAb_E4-derived therapeutics with application in the treatment of complement-mediated hemolytic disorders
Loss of CD4+ TÂ cell-intrinsic arginase 1 accelerates Th1 response kinetics and reduces lung pathology during influenza infection
Arginase 1 (Arg1), the enzyme catalyzing the conversion of arginine to ornithine, is a hallmark of IL-10-producing immunoregulatory M2 macrophages. However, its expression in T cells is disputed. Here, we demonstrate that induction of Arg1 expression is a key feature of lung CD4+ T cells during mouse in vivo influenza infection. Conditional ablation of Arg1 in CD4+ T cells accelerated both virus-specific T helper 1 (Th1) effector responses and its resolution, resulting in efficient viral clearance and reduced lung pathology. Using unbiased transcriptomics and metabolomics, we found that Arg1-deficiency was distinct from Arg2-deficiency and caused altered glutamine metabolism. Rebalancing this perturbed glutamine flux normalized the cellular Th1 response. CD4+ T cells from rare ARG1-deficient patients or CRISPR-Cas9-mediated ARG1-deletion in healthy donor cells phenocopied the murine cellular phenotype. Collectively, CD4+ T cell-intrinsic Arg1 functions as an unexpected rheostat regulating the kinetics of the mammalian Th1 lifecycle with implications for Th1-associated tissue pathologies
NIST Interlaboratory Study on Glycosylation Analysis of Monoclonal Antibodies: Comparison of Results from Diverse Analytical Methods
Glycosylation is a topic of intense current interest in the
development of biopharmaceuticals because it is related
to drug safety and efficacy. This work describes results of
an interlaboratory study on the glycosylation of the Primary
Sample (PS) of NISTmAb, a monoclonal antibody
reference material. Seventy-six laboratories from industry,
university, research, government, and hospital sectors
in Europe, North America, Asia, and Australia submit-
Avenue, Silver Spring, Maryland 20993; 22Glycoscience Research Laboratory, Genos, Borongajska cesta 83h, 10 000 Zagreb, Croatia;
23Faculty of Pharmacy and Biochemistry, University of Zagreb, A. KovacË icÂŽ a 1, 10 000 Zagreb, Croatia; 24Department of Chemistry, Georgia
State University, 100 Piedmont Avenue, Atlanta, Georgia 30303; 25glyXera GmbH, Brenneckestrasse 20 * ZENIT / 39120 Magdeburg, Germany;
26Health Products and Foods Branch, Health Canada, AL 2201E, 251 Sir Frederick Banting Driveway, Ottawa, Ontario, K1A 0K9 Canada;
27Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama Higashi-Hiroshima 739â8530 Japan; 28ImmunoGen,
830 Winter Street, Waltham, Massachusetts 02451; 29Department of Medical Physiology, Jagiellonian University Medical College,
ul. Michalowskiego 12, 31â126 Krakow, Poland; 30Department of Pathology, Johns Hopkins University, 400 N. Broadway Street Baltimore,
Maryland 21287; 31Mass Spec Core Facility, KBI Biopharma, 1101 Hamlin Road Durham, North Carolina 27704; 32Division of Mass
Spectrometry, Korea Basic Science Institute, 162 YeonGuDanji-Ro, Ochang-eup, Cheongwon-gu, Cheongju Chungbuk, 363â883 Korea
(South); 33Advanced Therapy Products Research Division, Korea National Institute of Food and Drug Safety, 187 Osongsaengmyeong 2-ro
Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, 363â700, Korea (South); 34Center for Proteomics and Metabolomics, Leiden
University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands; 35Ludger Limited, Culham Science Centre, Abingdon,
Oxfordshire, OX14 3EB, United Kingdom; 36Biomolecular Discovery and Design Research Centre and ARC Centre of Excellence for Nanoscale
BioPhotonics (CNBP), Macquarie University, North Ryde, Australia; 37Proteomics, Central European Institute for Technology, Masaryk
University, Kamenice 5, A26, 625 00 BRNO, Czech Republic; 38Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse
1, 39106 Magdeburg, Germany; 39Department of Biomolecular Sciences, Max Planck Institute of Colloids and Interfaces, 14424
Potsdam, Germany; 40AstraZeneca, Granta Park, Cambridgeshire, CB21 6GH United Kingdom; 41Merck, 2015 Galloping Hill Rd, Kenilworth,
New Jersey 07033; 42Analytical R&D, MilliporeSigma, 2909 Laclede Ave. St. Louis, Missouri 63103; 43MS Bioworks, LLC, 3950 Varsity Drive
Ann Arbor, Michigan 48108; 44MSD, Molenstraat 110, 5342 CC Oss, The Netherlands; 45Exploratory Research Center on Life and Living
Systems (ExCELLS), National Institutes of Natural Sciences, 5â1 Higashiyama, Myodaiji, Okazaki 444â8787 Japan; 46Graduate School of
Pharmaceutical Sciences, Nagoya City University, 3â1 Tanabe-dori, Mizuhoku, Nagoya 467â8603 Japan; 47Medical & Biological Laboratories
Co., Ltd, 2-22-8 Chikusa, Chikusa-ku, Nagoya 464â0858 Japan; 48National Institute for Biological Standards and Control, Blanche Lane, South
Mimms, Potters Bar, Hertfordshire EN6 3QG United Kingdom; 49Division of Biological Chemistry & Biologicals, National Institute of Health
Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158â8501 Japan; 50New England Biolabs, Inc., 240 County Road, Ipswich, Massachusetts
01938; 51New York University, 100 Washington Square East New York City, New York 10003; 52Target Discovery Institute, Nuffield Department
of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom; 53GlycoScience Group, The National Institute for
Bioprocessing Research and Training, Fosters Avenue, Mount Merrion, Blackrock, Co. Dublin, Ireland; 54Department of Chemistry, North
Carolina State University, 2620 Yarborough Drive Raleigh, North Carolina 27695; 55Pantheon, 201 College Road East Princeton, New Jersey
08540; 56Pfizer Inc., 1 Burtt Road Andover, Massachusetts 01810; 57Proteodynamics, ZI La Varenne 20â22 rue Henri et Gilberte Goudier 63200
RIOM, France; 58ProZyme, Inc., 3832 Bay Center Place Hayward, California 94545; 59Koichi Tanaka Mass Spectrometry Research Laboratory,
Shimadzu Corporation, 1 Nishinokyo Kuwabara-cho Nakagyo-ku, Kyoto, 604 8511 Japan; 60Childrenâs GMP LLC, St. Jude Childrenâs
Research Hospital, 262 Danny Thomas Place Memphis, Tennessee 38105; 61Sumitomo Bakelite Co., Ltd., 1â5 Muromati 1-Chome, Nishiku,
Kobe, 651â2241 Japan; 62Synthon Biopharmaceuticals, Microweg 22 P.O. Box 7071, 6503 GN Nijmegen, The Netherlands; 63Takeda
Pharmaceuticals International Co., 40 Landsdowne Street Cambridge, Massachusetts 02139; 64Department of Chemistry and Biochemistry,
Texas Tech University, 2500 Broadway, Lubbock, Texas 79409; 65Thermo Fisher Scientific, 1214 Oakmead Parkway Sunnyvale, California
94085; 66United States Pharmacopeia India Pvt. Ltd. IKP Knowledge Park, Genome Valley, Shamirpet, Turkapally Village, Medchal District,
Hyderabad 500 101 Telangana, India; 67Alberta Glycomics Centre, University of Alberta, Edmonton, Alberta T6G 2G2 Canada; 68Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2 Canada; 69Department of Chemistry, University of California, One Shields Ave,
Davis, California 95616; 70HorvaÂŽ th Csaba Memorial Laboratory for Bioseparation Sciences, Research Center for Molecular Medicine, Doctoral
School of Molecular Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Egyetem ter 1, Hungary; 71Translational Glycomics
Research Group, Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Veszprem, Egyetem ut 10, Hungary;
72Delaware Biotechnology Institute, University of Delaware, 15 Innovation Way Newark, Delaware 19711; 73Proteomics Core Facility, University
of Gothenburg, Medicinaregatan 1G SE 41390 Gothenburg, Sweden; 74Department of Medical Biochemistry and Cell Biology, University of
Gothenburg, Institute of Biomedicine, Sahlgrenska Academy, Medicinaregatan 9A, Box 440, 405 30, Gothenburg, Sweden; 75Department of
Clinical Chemistry and Transfusion Medicine, Sahlgrenska Academy at the University of Gothenburg, Bruna Straket 16, 41345 Gothenburg,
Sweden; 76Department of Chemistry, University of Hamburg, Martin Luther King Pl. 6 20146 Hamburg, Germany; 77Department of Chemistry,
University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba, Canada R3T 2N2; 78Laboratory of Mass Spectrometry of Interactions and
Systems, University of Strasbourg, UMR Unistra-CNRS 7140, France; 79Natural and Medical Sciences Institute, University of Tuš bingen,
Markwiesenstrae 55, 72770 Reutlingen, Germany; 80Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical
Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands; 81Division of Bioanalytical Chemistry, Amsterdam Institute for
Molecules, Medicines and Systems, Vrije Universiteit Amsterdam, de Boelelaan 1085, 1081 HV Amsterdam, The Netherlands; 82Department
of Chemistry, Waters Corporation, 34 Maple Street Milford, Massachusetts 01757; 83Zoetis, 333 Portage St. Kalamazoo, Michigan 49007
Authorâs ChoiceâFinal version open access under the terms of the Creative Commons CC-BY license.
Received July 24, 2019, and in revised form, August 26, 2019
Published, MCP Papers in Press, October 7, 2019, DOI 10.1074/mcp.RA119.001677
ER: NISTmAb Glycosylation Interlaboratory Study
12 Molecular & Cellular Proteomics 19.1
Downloaded from https://www.mcponline.org by guest on January 20, 2020
ted a total of 103 reports on glycan distributions. The
principal objective of this study was to report and compare
results for the full range of analytical methods presently
used in the glycosylation analysis of mAbs. Therefore,
participation was unrestricted, with laboratories
choosing their own measurement techniques. Protein glycosylation
was determined in various ways, including at
the level of intact mAb, protein fragments, glycopeptides,
or released glycans, using a wide variety of methods for
derivatization, separation, identification, and quantification.
Consequently, the diversity of results was enormous,
with the number of glycan compositions identified by
each laboratory ranging from 4 to 48. In total, one hundred
sixteen glycan compositions were reported, of which 57
compositions could be assigned consensus abundance
values. These consensus medians provide communityderived
values for NISTmAb PS. Agreement with the consensus
medians did not depend on the specific method or
laboratory type. The study provides a view of the current
state-of-the-art for biologic glycosylation measurement
and suggests a clear need for harmonization of glycosylation
analysis methods. Molecular & Cellular Proteomics
19: 11â30, 2020. DOI: 10.1074/mcp.RA119.001677.L
- âŠ