25 research outputs found

    Dissecting the non-neuronal cell contribution to Parkinson's disease pathogenesis using induced pluripotent stem cells

    Full text link
    Parkinson's disease (PD) is an incurable age-linked neurodegenerative disease with characteristic movement impairments that are caused by the progressive loss of dopamine-containing neurons (DAn) within the substantia nigra pars compacta. It has been suggested that misfolded protein aggregates together with neuroinfammation and glial reactivity, may impact nerve cell function, leading to neurodegeneration and diseases, such as PD. However, not many studies have been able to examine the role of human glial cells in the pathogenesis of PD. With the advent of induced pluripotent stem cell (iPSC) technology, it is now possible to reprogram human somatic cells to pluripotency and to generate viable human patient-specifc DA neurons and glial cells, providing a tremendous opportunity for dissecting cellular and molecular pathological mechanisms occurring at early stages of PD. This reviews will report on recent work using human iPSC and 3D brain organoid models showing that iPSC technology can be used to recapitulate PD-relevant disease-associated phenotypes, including protein aggregation, cell death or loss of neurite complexity and defcient autophagic vacuoles clearance and focus on the recent co-culture systems that are revealing new insights into the complex interactions that occur between diferent brain cell types during neurodegeneration. Consequently, such advances are the key to improve our understanding of PD pathology and generate potential targets for new therapies aimed at curing PD patients

    Long-Term Labeling of Hippocampal Neural Stem Cells by a Lentiviral Vector

    Get PDF
    Using a lentivirus-mediated labeling method, we investigated whether the adult hippocampus retains long-lasting, self-renewing neural stem cells (NSCs). We first showed that a single injection of a lentiviral vector expressing a green fluorescent protein (LV PGK-GFP) into the subgranular zone (SGZ) of the adult hippocampus enabled an efficient, robust, and long-term marking of self-renewing NSCs and their progeny. Interestingly, a subset of labeled cells showed the ability to proliferate multiple times and give rise to Sox2+ cells, clearly suggesting the ability of NSCs to self-renew for an extensive period of time (up to 6 months). In addition, using GFP+ cells isolated from the SGZ of mice that received a LV PGK-GFP injection 3 months earlier, we demonstrated that some GFP+ cells displayed the essential properties of NSCs, such as self-renewal and multipotency. Furthermore, we investigated the plasticity of NSCs in a perforant path transection, which has been shown to induce astrocyte formation in the molecular layer of the hippocampus. Our lentivirus (LV)-mediated labeling study revealed that hippocampal NSCs are not responsible for the burst of astrocyte formation, suggesting that signals released from the injured perforant path did not influence NSC fate determination. Therefore, our studies showed that a gene delivery system using LVs is a unique method to be used for understanding the complex nature of NSCs and may have translational impact in gene therapy by efficiently targeting NSCs

    IPSC‐based modeling of THD recapitulates disease phenotypes and reveals neuronal malformation

    Get PDF
    Tyrosine hydroxylase deficiency (THD) is a rare genetic disorder leading to dopaminergic depletion and early-onset Parkinsonism. Affected children present with either a severe form that does not respond to L-Dopa treatment (THD-B) or a milder L-Dopa responsive form (THD-A). We generated induced pluripotent stem cells (iPSCs) from THD patients that were differentiated into dopaminergic neurons (DAn) and compared with control-DAn from healthy individuals and gene-corrected isogenic controls. Consistent with patients, THD iPSC-DAn displayed lower levels of DA metabolites and reduced TH expression, when compared to controls. Moreover, THD iPSC-DAn showed abnormal morphology, including reduced total neurite length and neurite arborization defects, which were not evident in DAn differentiated from control-iPSC. Treatment of THD-iPSC-DAn with L-Dopa rescued the neuronal defects and disease phenotype only in THDA-DAn. Interestingly, L-Dopa treatment at the stage of neuronal precursors could prevent the alterations in THDB-iPSC-DAn, thus suggesting the existence of a critical developmental window in THD. Our iPSC-based model recapitulates THD disease phenotypes and response to treatment, representing a promising tool for investigating pathogenic mechanisms, drug screening, and personalized management

    Long-term labeling of hippocampal neural stem cells by a lentiviral vector

    Get PDF
    Using a lentivirus-mediated labeling method, we investigated whether the adult hippocampus retains long-lasting, self-renewing neural stem cells (NSCs). We first showed that a single injection of a lentiviral vector expressing a green fluorescent protein (LV PGK-GFP) into the subgranular zone (SGZ) of the adult hippocampus enabled an efficient, robust, and long-term marking of self-renewing NSCs and their progeny. Interestingly, a subset of labeled cells showed the ability to proliferate multiple times and give rise to Sox2+ cells, clearly suggesting the ability of NSCs to self-renew for an extensive period of time (up to 6 months). In addition, using GFP+ cells isolated from the SGZ of mice that received a LV PGK-GFP injection 3 months earlier, we demonstrated that some GFP+ cells displayed the essential properties of NSCs, such as self-renewal and multipotency. Furthermore, we investigated the plasticity of NSCs in a perforant path transection, which has been shown to induce astrocyte formation in the molecular layer of the hippocampus. Our lentivirus (LV)-mediated labeling study revealed that hippocampal NSCs are not responsible for the burst of astrocyte formation, suggesting that signals released from the injured perforant path did not influence NSC fate determination. Therefore, our studies showed that a gene delivery system using LVs is a unique method to be used for understanding the complex nature of NSCs and may have translational impact in gene therapy by efficiently targeting NSCs

    Blocking IL-6 signaling prevents astrocyte-induced neurodegeneration in an iPSC-based model of Parkinson’s disease

    Full text link
    Parkinson's disease (PD) is a neurodegenerative disease associated with progressive death of midbrain dopamine (DAn) neurons in the substantia nigra (SN). Since it has been proposed that patients with PD exhibit an overall proinflammatory state, and since astrocytes are key mediators of the inflammation response in the brain, here we sought to address whether astrocyte-mediated inflammatory signaling could contribute to PD neuropathology. For this purpose, we generated astrocytes from induced pluripotent stem cells (iPSCs) representing patients with PD and healthy controls. Transcriptomic analyses identified a unique inflammatory gene expression signature in PD astrocytes compared with controls. In particular, the proinflammatory cytokine IL-6 was found to be highly expressed and released by PD astrocytes and was found to induce toxicity in DAn. Mechanistically, neuronal cell death was mediated by IL-6 receptor (IL-6R) expressed in human PD neurons, leading to downstream activation of STAT3. Blockage of IL-6R by the addition of the FDA-approved anti-IL-6R antibody, Tocilizumab, prevented PD neuronal death. SN neurons overexpressing IL-6R and reactive astrocytes expressing IL-6 were detected in postmortem brain tissue of patients at early stages of PD. Our findings highlight the potential role of astrocyte-mediated inflammatory signaling in neuronal loss in PD and pave the way for the design of future therapeutics

    Human DNA methylomes of neurodegenerative diseases show common epigenomic patterns

    Get PDF
    Different neurodegenerative disorders often show similar lesions, such as the presence of amyloid plaques, TAU-neurotangles and synuclein inclusions. The genetically inherited forms are rare, so we wondered whether shared epigenetic aberrations, such as those affecting DNA methylation, might also exist. The studied samples were gray matter samples from the prefrontal cortex of control and neurodegenerative disease-associated cases. We performed the DNA methylation analyses of Alzheimer's disease, dementia with Lewy bodies, Parkinson's disease and Alzheimer-like neurodegenerative profile associated with Down's syndrome samples. The DNA methylation landscapes obtained show that neurodegenerative diseases share similar aberrant CpG methylation shifts targeting a defined gene set. Our findings suggest that neurodegenerative disorders might have similar pathogenetic mechanisms that subsequently evolve into different clinical entities. The identified aberrant DNA methylation changes can be used as biomarkers of the disorders and as potential new targets for the development of new therapies

    Parkinson’s disease patient-specific neuronal networks carrying the LRRK2 G2019S mutation unveil early functional alterations that predate neurodegeneration

    Get PDF
    A deeper understanding of early disease mechanisms occurring in Parkinson's disease (PD) is needed to reveal restorative targets. Here we report that human induced pluripotent stem cell (iPSC)-derived dopaminergic neurons (DAn) obtained from healthy individuals or patients harboring LRRK2 PD-causing mutation can create highly complex networks with evident signs of functional maturation over time. Compared to control neuronal networks, LRRK2 PD patients' networks displayed an elevated bursting behavior, in the absence of neurodegeneration. By combining functional calcium imaging, biophysical modeling, and DAn-lineage tracing, we found a decrease in DAn neurite density that triggered overall functional alterations in PD neuronal networks. Our data implicate early dysfunction as a prime focus that may contribute to the initiation of downstream degenerative pathways preceding DAn loss in PD, highlighting a potential window of opportunity for pre-symptomatic assessment of chronic degenerative diseases

    Role of DYRK1A in hippocampal neuroplasticity : implications for Down syndrome

    Get PDF
    Synaptic connections in the brain respond throughout their lives to the activity of incoming neurons, adjusting their biological properties to increment activity-dependent changes. Hippocampal neuronal plasticity disruptions have been suggested as mechanisms underlying cognitive impairments in Down syndrome (DS). However, it remains unknown whether specific candidate genes are implicated in these phenotypes in the multifactorial context of trisomy 21. DYRK1A is a serine/threonine kinase, which overexpression is sufficient to recapitulate hippocampal learning and memory deficits characteristic of DS individuals and trisomic mouse models. In this Thesis we have studied the effects of DYRK1A overexpression on activity-dependent plasticity in the hippocampus. We found that transgenic mice overexpressing Dyrk1A (TgDyrk1A) present hippocampal morphological alterations in CA1 and CA3 that may constrain network connectivity, and therefore are relevant to the structure-function relationship. We also found reduced LTP that may derive from the changes in connectivity and in dendritic occupancy. Dendritic excitability and neuronal morphology are determinants of synaptic efficacy and thus may contribute to the hippocampal learning and memory deficits detected. In addition, we demonstrated important defects in adult neurogenesis in the dentate gyrus including reduced cell proliferation rate, altered cell cycle progression and reduced cell cycle exit leading to premature migration, altered differentiation and reduced survival of newly born cells. Moreover, less proportion of newborn hippocampal TgDyrk1A neurons are activated upon learning, suggesting reduced integration in learning circuits. Some of these alterations were rescued by normalizing DYRK1A kinase using a DYRK1A inhibitor, epigallocatechin-3-gallate. Interestingly, environmental stimulation also normalized DYRK1A kinase overdosage in the hippocampus, and rescued hippocampal morphology, synaptic plasticity and adult neurogenesis alterations in TgDyrk1A mice. We conclude that Dyrk1A is a good candidate gene to explain neuronal plasticity deficits in DS and that targeting DYRK1A kinase activity excess either pharmacologically or using environmental stimulation in the adult could correct these defects in DS.Les connexions sinàptiques tenen la capacitat de respondre a l’activitat de neurones ajustant les seves propietats biològiques per incrementar els canvis activitat-depenents. Alteracions en la plasticitat neuronal de l’hipocamp s'han suggerit com a mecanismes subjacents als deterioraments cognitius característics en la síndrome de Down (SD). No obstant, es desconeix quins gens específics estan implicats en aquests fenotips en el context de la trisomia del cromosoma 21. DYRK1A és una serina / treonina quinasa, que quan es troba sobreexpressada recapitula el dèficit d'aprenentatge i de memòria depenent de l'hipocamp característic de la SD. En aquesta tesi, s’han estudiat els efectes de la sobreexpressió de DYRK1A en la plasticitat activitat-dependent de l’hipocamp. Hem descobert que ratolins transgènics amb sobreexpressió de Dyrk1A (TgDyrk1A) presenten alteracions morfològiques en les regions CA1 i CA3 de l'hipocamp, una limitació estructural en les connexions neuronals que és rellevant per entendre la relació entre estructura i funció. A més, hem trobat una reducció en la LTP possiblement deguda als canvis en la connectivitat i ocupació dendrítica. L’excitabilitat de les dendrites i la morfologia neuronal són factors determinants de l'eficàcia sinàptica i per tant poden contribuir als dèficits d'aprenentatge i la memòria de l'hipocamp detectats. Hem demostrat defectes importants en la neurogènesi adulta en el gir dentat incloent una reduïda taxa de proliferació cel·lular, alteracions en el cicle cel·lular i reducció de cèl·lules que surten del cicle cel·lular que condueix a una migració precoç de les noves cèl·lules generades i una reducció de la supervivència. D'altra banda, en ratolins TgDyrk1A hi ha menys proporció de neurones generades de novo que s'activen amb l'aprenentatge, indicant una menor integració d’aquestes en els circuits implicats en l'aprenentatge. Algunes d'aquestes alteracions han estat rescatades per la normalització de DYRK1A quinasa utilitzant un inhibidor de DYRK1A, epigallocatechin-3-gallate. L'estimulació del medi ambient també normalitza la sobreexpressió de DYRK1A quinasa en l'hipocamp, i rescata la morfologia, la plasticitat sinàptica i les alteracions en la neurogènesi adulta en ratolins TgDyrk1A. Arribem a la conclusió que Dyrk1A és un bon gen candidat per explicar els dèficits de plasticitat neuronal en la SD i que tractant l’excés d'activitat de la quinasa DYRK1A farmacològicament o mitjançant l'estimulació ambiental en l'adult podria corregir aquests defectes en la SD

    Deficits in neuronal architecture but not over-inhibition are main determinants of reduced neuronal network activity in a mouse model of overexpression of Dyrk1A

    Get PDF
    Altres ajuts: CERCA Programme/Generalitat de Catalunya ; The CIBER of Rare Diseases is an initiative of the ISCIIIIn this study, we investigated the impact of Dual specificity tyrosine-phosphorylation-regulated kinase 1A (Dyrk1A) overexpression, a gene associated with Down syndrome, on hippocampal neuronal deficits in mice. Our findings revealed that mice overexpressing Dyrk1A (TgDyrk1A; TG) exhibited impaired hippocampal recognition memory, disrupted excitation-inhibition balance, and deficits in long-term potentiation (LTP). Specifically, we observed layer-specific deficits in dendritic arborization of TG CA1 pyramidal neurons in the stratum radiatum. Through computational modeling, we determined that these alterations resulted in reduced storage capacity and compromised integration of inputs, with decreased high γ oscillations. Contrary to prevailing assumptions, our model suggests that deficits in neuronal architecture, rather than over-inhibition, primarily contribute to the reduced network. We explored the potential of environmental enrichment (EE) as a therapeutic intervention and found that it normalized the excitation-inhibition balance, restored LTP, and improved short-term recognition memory. Interestingly, we observed transient significant dendritic remodeling, leading to recovered high γ. However, these effects were not sustained after EE discontinuation. Based on our findings, we conclude that Dyrk1A overexpression-induced layer-specific neuromorphological disturbances impair the encoding of place and temporal context. These findings contribute to our understanding of the underlying mechanisms of Dyrk1A-related hippocampal deficits and highlight the challenges associated with long-term therapeutic interventions for cognitive impairments
    corecore