63 research outputs found

    L006 Role of serum response factor (SRF) on microrna expression in the cardiovascular system

    Get PDF
    Serum response factor (SRF) is a transcription factor of the MADS box family that regulates essential structural and metabolic genes in many tissues. Using a mouse Cre-Lox model, we have shown previously that SRF inactivation can result in severe cardiac and intestinal failure as well as angiogenic defects.We have performed transcriptomic analyses of gene expression alteration in the cardiac and vascular system following SRF inactivation (see other abstracts) and we found a large number of down-regulated genes but an even larger number that are up-regulated after SRF inactivation. This latter result was partly unexpected since SRF is mainly known as a positive regulator of transcription. While various hypotheses can account for this up-regulation, we chose to focus on the potential role of SRF in the control of miRNAs, which are endogenous small RNAs that can inhibit the expression of other mRNAs. Indeed, recent bioinformatic analyses revealed that more than 40 microRNAs contain SRF target sequences in their promoter region, suggesting a possible broad regulatory role of SRF for these microRNAs. It has already been shown by others that SRF regulates miR-1 and miR-133 expression during heart development, those miRs being essential for correct cardiogenesis and the control of cardiac hypertrophy. The aims of this project are: 1) To analyse the role of SRF in the regulation of microRNAs in the adult heart and vessels of mice by a transcriptomic approach and ChIP on Chip approach ; 2) To study the biological role of microRNAs regulated by SRF and their implications in development of cardiovascular disease.To analyse the role of SRF in microRNA regulation, we have started to extract total RNA from hearts of SRF conditional knockout mice at different stages and in basal and hypertrophic settings. Preliminary analysis of global microRNA expression profile of these samples using Illumina V2 microRNA beadarrays and characterization of the expression of putative SRF MiR targets by quantitative RT PCR will be presented

    Nmrk2 gene is upregulated in dilated cardiomyopathy and required for cardiac function and nad levels during aging

    Get PDF
    Dilated cardiomyopathy (DCM) is a disease of multifactorial etiologies, the risk of which is increased by male sex and age. There are few therapeutic options for patients with DCM who would benefit from identification of common targetable pathways. We used bioinformatics to identify the Nmrk2 gene involved in nicotinamide adenine dinucleotde (NAD) coenzyme biosynthesis as activated in different mouse models and in hearts of human patients with DCM while the Nampt gene controlling a parallel pathway is repressed. A short NMRK2 protein isoform is also known as muscle integrin binding protein (MIBP) binding the α7β1 integrin complex. We investigated the cardiac phenotype of Nmrk2-KO mice to establish its role in cardiac remodeling and function. Young Nmrk2-KO mice developed an eccentric type of cardiac hypertrophy in response to pressure overload rather than the concentric hypertrophy observed in controls. Nmrk2-KO mice developed a progressive DCM-like phenotype with aging, associating eccentric remodeling of the left ventricle and a decline in ejection fraction and showed a reduction in myocardial NAD levels at 24 months. In agreement with involvement of NMRK2 in integrin signaling, we observed a defect in laminin deposition in the basal lamina of cardiomyocytes leading to increased fibrosis at middle age. The α7 integrin was repressed at both transcript and protein level at 24 months. Nmrk2 gene is required to preserve cardiac structure and function, and becomes an important component of the NAD biosynthetic pathways during aging. Molecular characterization of compounds modulating this pathway may have therapeutic potential

    Aerobic Exercise and Pharmacological Treatments Counteract Cachexia by Modulating Autophagy in Colon Cancer

    Get PDF
    Recent studies have correlated physical activity with a better prognosis in cachectic patients, although the underlying mechanisms are not yet understood. In order to identify the pathways involved in the physical activity-mediated rescue of skeletal muscle mass and function, we investigated the effects of voluntary exercise on cachexia in colon carcinoma (C26)-bearing mice. Voluntary exercise prevented loss of muscle mass and function, ultimately increasing survival of C26-bearing mice. We found that the autophagic flux is overloaded in skeletal muscle of both colon carcinoma murine models and patients, but not in running C26-bearing mice, thus suggesting that exercise may release the autophagic flux and ultimately rescue muscle homeostasis. Treatment of C26-bearing mice with either AICAR or rapamycin, two drugs that trigger the autophagic flux, also rescued muscle mass and prevented atrogene induction. Similar effects were reproduced on myotubes in vitro, which displayed atrophy following exposure to C26-conditioned medium, a phenomenon that was rescued by AICAR or rapamycin treatment and relies on autophagosome-lysosome fusion (inhibited by chloroquine). Since AICAR, rapamycin and exercise equally affect the autophagic system and counteract cachexia, we believe autophagy-triggering drugs may be exploited to treat cachexia in conditions in which exercise cannot be prescribed

    Selective involvement of serum response factor in pressure-induced myogenic tone in resistance arteries

    Get PDF
    OBJECTIVE: In resistance arteries, diameter adjustment in response to pressure changes depends on the vascular cytoskeleton integrity. Serum response factor (SRF) is a dispensable transcription factor for cellular growth, but its role remains unknown in resistance arteries. We hypothesized that SRF is required for appropriate microvascular contraction. METHODS AND RESULTS: We used mice in which SRF was specifically deleted in smooth muscle or endothelial cells, and their control. Myogenic tone and pharmacological contraction was determined in resistance arteries. mRNA and protein expression were assessed by quantitative real-time PCR (qRT-PCR) and Western blot. Actin polymerization was determined by confocal microscopy. Stress-activated channel activity was measured by patch clamp. Myogenic tone developing in response to pressure was dramatically decreased by SRF deletion (5.9+/-2.3%) compared with control (16.3+/-3.2%). This defect was accompanied by decreases in actin polymerization, filamin A, myosin light chain kinase and myosin light chain expression level, and stress-activated channel activity and sensitivity in response to pressure. Contractions induced by phenylephrine or U46619 were not modified, despite a higher sensitivity to p38 blockade; this highlights a compensatory pathway, allowing normal receptor-dependent contraction. CONCLUSIONS: This study shows for the first time that SRF has a major part to play in the control of local blood flow via its central role in pressure-induced myogenic tone in resistance arteries

    Inactivation of serum response factor contributes to decrease vascular muscular tone and arterial stiffness in mice

    Get PDF
    RATIONALE: Vascular smooth muscle (SM) cell phenotypic modulation plays an important role in arterial stiffening associated with aging. Serum response factor (SRF) is a major transcription factor regulating SM genes involved in maintenance of the contractile state of vascular SM cells. OBJECTIVE: We investigated whether SRF and its target genes regulate intrinsic SM tone and thereby arterial stiffness. METHODS AND RESULTS: The SRF gene was inactivated SM-specific knockout of SRF (SRF(SMKO)) specifically in vascular SM cells by injection of tamoxifen into adult transgenic mice. Fifteen days later, arterial pressure and carotid thickness were lower in SRF(SMKO) than in control mice. The carotid distensibility/pressure and elastic modulus/wall stress curves showed a greater arterial elasticity in SRF(SMKO) without modification in collagen/elastin ratio. In SRF(SMKO), vasodilation was decreased in aorta and carotid arteries, whereas a decrease in contractile response was found in mesenteric arteries. By contrast, in mice with inducible SRF overexpression, the in vitro contractile response was significantly increased in all arteries. Without endothelium, the contraction was reduced in SRF(SMKO) compared with control aortic rings owing to impairment of the NO pathway. Contractile components (SM-actin and myosin light chain), regulators of the contractile response (myosin light chain kinase, myosin phosphatase target subunit 1, and protein kinase C-potentiated myosin phosphatase inhibitor) and integrins were reduced in SRF(SMKO). CONCLUSIONS: SRF controls vasoconstriction in mesenteric arteries via vascular SM cell phenotypic modulation linked to changes in contractile protein gene expression. SRF-related decreases in vasomotor tone and cell-matrix attachment increase arterial elasticity in large arteries

    MicroRNAs Dynamically Remodel Gastrointestinal Smooth Muscle Cells

    Get PDF
    Smooth muscle cells (SMCs) express a unique set of microRNAs (miRNAs) which regulate and maintain the differentiation state of SMCs. The goal of this study was to investigate the role of miRNAs during the development of gastrointestinal (GI) SMCs in a transgenic animal model. We generated SMC-specific Dicer null animals that express the reporter, green fluorescence protein, in a SMC-specific manner. SMC-specific knockout of Dicer prevented SMC miRNA biogenesis, causing dramatic changes in phenotype, function, and global gene expression in SMCs: the mutant mice developed severe dilation of the intestinal tract associated with the thinning and destruction of the smooth muscle (SM) layers; contractile motility in the mutant intestine was dramatically decreased; and SM contractile genes and transcriptional regulators were extensively down-regulated in the mutant SMCs. Profiling and bioinformatic analyses showed that SMC phenotype is regulated by a complex network of positive and negative feedback by SMC miRNAs, serum response factor (SRF), and other transcriptional factors. Taken together, our data suggest that SMC miRNAs are required for the development and survival of SMCs in the GI tract

    The Oxygen Paradox, the French Paradox, and age-related diseases

    Get PDF
    open46openDavies, Joanna M. S.; Cillard, Josiane; Friguet, Bertrand; Cadenas, Enrique; Cadet, Jean; Cayce, Rachael; Fishmann, Andrew; Liao, David; Bulteau, Anne-Laure; Derbré, Frédéric; Rébillard, Amélie; Burstein, Steven; Hirsch, Etienne; Kloner, Robert A.; Jakowec, Michael; Petzinger, Giselle; Sauce, Delphine; Sennlaub, Florian; Limon, Isabelle; Ursini, Fulvio; Maiorino, Matilde; Economides, Christina; Pike, Christian J.; Cohen, Pinchas; Salvayre, Anne Negre; Halliday, Matthew R.; Lundquist, Adam J.; Jakowec, Nicolaus A.; Mechta-Grigoriou, Fatima; Mericskay, Mathias; Mariani, Jean; Li, Zhenlin; Huang, David; Grant, Ellsworth; Forman, Henry J.; Finch, Caleb E.; Sun, Patrick Y.; Pomatto, Laura C. D.; Agbulut, Onnik; Warburton, David; Neri, Christian; Rouis, Mustapha; Cillard, Pierre; Capeau, Jacqueline; Rosenbaum, Jean; Davies, Kelvin J. A.Davies, Joanna M. S.; Cillard, Josiane; Friguet, Bertrand; Cadenas, Enrique; Cadet, Jean; Cayce, Rachael; Fishmann, Andrew; Liao, David; Bulteau, Anne-Laure; Derbré, Frédéric; Rébillard, Amélie; Burstein, Steven; Hirsch, Etienne; Kloner, Robert A.; Jakowec, Michael; Petzinger, Giselle; Sauce, Delphine; Sennlaub, Florian; Limon, Isabelle; Ursini, Fulvio; Maiorino, Matilde; Economides, Christina; Pike, Christian J.; Cohen, Pinchas; Salvayre, Anne Negre; Halliday, Matthew R.; Lundquist, Adam J.; Jakowec, Nicolaus A.; Mechta-Grigoriou, Fatima; Mericskay, Mathias; Mariani, Jean; Li, Zhenlin; Huang, David; Grant, Ellsworth; Forman, HENRY J.; Finch, Caleb E.; Sun, Patrick Y.; Pomatto, Laura C. D.; Agbulut, Onnik; Warburton, David; Neri, Christian; Rouis, Mustapha; Cillard, Pierre; Capeau, Jacqueline; Rosenbaum, Jean; Davies, Kelvin J. A

    The Mayer-Rokitansky-Küster-Hauser syndrome (congenital absence of uterus and vagina) – phenotypic manifestations and genetic approaches

    Get PDF
    The Mayer-Rokitansky-Küster-Hauser (MRKH) syndrome affects at least 1 out of 4500 women and has for a long time been considered as a sporadic anomaly. Congenital absence of upper vagina and uterus is the prime feature of the disease which, in addition, is often found associated with unilateral renal agenesis or adysplasia as well as skeletal malformations (MURCS association). The phenotypic manifestations of MRKH overlap various other syndromes or associations and thus require accurate delineation. Since MRKH manifests itself in males, the term GRES syndrome (Genital, Renal, Ear, Skeletal) might be more appropriate when applied to both sexes. The MRKH syndrome, when described in familial aggregates, seems to be transmitted as an autosomal dominant trait with an incomplete degree of penetrance and variable expressivity. This suggests the involvement of either mutations in a major developmental gene or a limited chromosomal deletion. Until recently progress in understanding the genetics of MRKH syndrome has been slow, however, now HOX genes have been shown to play key roles in body patterning and organogenesis, and in particular during genital tract development. Expression and/or function defects of one or several HOX genes may account for this syndrome

    Gender issues in cardiovascular diseases. Focus on energy metabolism

    No full text
    International audienceIt is increasingly recognized that sex and gender differences (S&G) influence cardiovascular diseases (CVD), greatly impacting disease management. In terms of definition, sex refers to biological aspects, gender effects being mainly related to socio-cultural factors. Both sex and gender are interpenetrated in humans and difficult to separate. This is more clearly feasible in animal models where sex effects largely predominate. As alterations in energy metabolism are essential features of cardiovascular diseases, sexual dimorphism of energy metabolism and more specifically mitochondria occupies a place of choice. This review presents the basis of sex and gender differences in the cardiovascular pathophysiology, and how it mainly affects woman diseases, effectiveness of therapies and clinical outcome. These differences rely on complex molecular mechanisms that are still poorly understood because of the under-representation of females/women in experimental and clinical studies. Finally, the differing psychological and biological phases of woman's life are largely underestimated. This review presents an overview of the field with focus on differences in cardiac energy metabolism, which are illustrated with specific examples
    corecore