34 research outputs found

    Novel loci and Mapuche genetic ancestry are associated with pubertal growth traits in Chilean boys

    Get PDF
    Puberty is a complex developmental process that varies considerably among individuals and populations. Genetic factors explain a large proportion of the variability of several pubertal traits. Recent genome-wide association studies (GWAS) have identified hundreds of variants involved in traits that result from body growth, like adult height. However, they do not capture many genetic loci involved in growth changes over distinct growth phases. Further, such GWAS have been mostly performed in Europeans, but it is unknown how these findings relate to other continental populations. In this study, we analyzed the genetic basis of three pubertal traits; namely, peak height velocity (PV), age at PV (APV) and height at APV (HAPV). We analyzed a cohort of 904 admixed Chilean children and adolescents with European and Mapuche Native American ancestries. Height was measured on roughly a 6−month basis from childhood to adolescence between 2006 and 2019. We predict that, in average, HAPV is 4.3 cm higher in European than in Mapuche adolescents (P = 0.042), and APV is 0.73 years later in European compared with Mapuche adolescents (P = 0.023). Further, by performing a GWAS on 774, 433 single-nucleotide polymorphisms, we identified a genetic signal harboring 3 linked variants significantly associated with PV in boys (P <5×10−8). This signal has never been associated with growth-related traits

    Autosomal dominant hypoparathyroidism associated with short stature and premature osteoarthritis

    Get PDF
    Familial hypoparathyroidism is an unusual and genetically heterogeneous group of disorders that may be isolated or may be associated with congenital or acquired abnormalities in other organs or glands. We have evaluated a family with a novel syndrome of autosomal dominant hypoparathyroidism, short stature, and premature osteoarthritis. A 74-yr-old female (generation I) presented with hypoparathyroidism, a movement disorder secondary to ectopic calcification of the cerebellum and basal ganglia, and a history of knee and hip replacements for osteoarthritis. Two members of generation II and one member of generation III were also documented with hypoparathyroidism, short stature, and premature osteoarthritis evident as early as 11 yr. Because of the known association between autosomal dominant hypoparathyroidism and activating mutations of the calcium-sensing receptor (CaR) gene, further studies were performed. Sequencing of PCR-amplified genomic DNA revealed a leucine to valine substitution at position 616 in the first transmembrane domain of the CaR, which cosegregated with the disorder. However, this amino acid sequence change did not affect the total accumulation of inositol phosphates as a function of extracellular calcium concentrations in transfected HEK-293 cells. In conclusion, a sequence alteration in the coding region of the CaR gene was identified, but is not conclusively involved in the etiology of this novel syndrome. The cosegregation of hypoparathyroidism, short stature, and osteoarthritis in this kindred does suggest a genetic abnormality involving a common molecular mechanism in parathyroid, bone, and cartilage

    Functionally compromised CHD7 alleles in patients with isolated GnRH deficiency

    Get PDF
    Inactivating mutations in chromodomain helicase DNA binding protein 7 (CHD7) cause CHARGE syndrome, a severe multiorgan system disorder of which Isolated gonadotropin-releasing hormone (GnRH) deficiency (IGD) is a minor feature. Recent reports have described predominantly missense CHD7 alleles in IGD patients, but it is unclear if these alleles are relevant to causality or overall genetic burden of Kallmann syndrome (KS) and normosmic form of IGD. To address this question, we sequenced CHD7 in 783 well-phenotyped IGD patients lacking full CHARGE features; we identified nonsynonymous rare sequence variants in 5.2% of the IGD cohort (73% missense and 27% splice variants). Functional analyses in zebrafish using a surrogate otolith assay of a representative set of these CHD7 alleles showed that rare sequence variants observed in controls showed no altered function. In contrast, 75% of the IGD-associated alleles were deleterious and resulted in both KS and normosmic IGD. In two families, pathogenic mutations in CHD7 coexisted with mutations in other known IGD genes. Taken together, our data suggest that rare deleterious CHD7 alleles contribute to the mutational burden of patients with both KS and normosmic forms of IGD in the absence of full CHARGE syndrome. These findings (i) implicate a unique role or preferential sensitivity for CHD7 in the ontogeny of GnRH neurons, (ii) reiterate the emerging genetic complexity of this family of IGD disorders, and (iii) demonstrate how the coordinated use of well-phenotyped cohorts, families, and functional studies can inform genetic architecture and provide insights into the developmental biology of cellular systems

    International Consensus Guideline on Small for Gestational Age (SGA): Etiology and Management from Infancy to Early Adulthood

    Get PDF
    : This International Consensus Guideline was developed by experts in the field of SGA of 10 pediatric endocrine societies worldwide. A consensus meeting was held and 1300 articles formed the basis for discussions. All experts voted about the strengths of the recommendations. The guideline gives new and clinically relevant insights into the etiology of short stature after SGA birth, including novel knowledge about (epi)genetic causes. Besides, it presents long-term consequences of SGA birth and new treatment options, including treatment with gonadotropin-releasing hormone agonist (GnRHa) in addition to growth hormone (GH) treatment, and the metabolic and cardiovascular health of young adults born SGA after cessation of childhood-GH-treatment in comparison with appropriate control groups. To diagnose SGA, accurate anthropometry and use of national growth charts are recommended. Follow-up in early life is warranted and neurodevelopment evaluation in those at risk. Excessive postnatal weight gain should be avoided, as this is associated with an unfavorable cardio-metabolic health profile in adulthood. Children born SGA with persistent short stature < -2.5 SDS at age 2 years or < -2 SDS at age of 3-4 years, should be referred for diagnostic work-up. In case of dysmorphic features, major malformations, microcephaly, developmental delay, intellectual disability and/or signs of skeletal dysplasia, genetic testing should be considered. Treatment with 0.033-0.067 mg GH/kg/day is recommended in case of persistent short stature at age of 3-4 years. Adding GnRHa treatment could be considered when short adult height is expected at pubertal onset. All young adults born SGA require counseling to adopt a healthy lifestyle

    Latin American Consensus: Children Born Small for Gestational Age

    Get PDF
    72-87Cuatrimestra

    The phenotype of floating-harbor syndrome:clinical characterization of 52 individuals with mutations in exon 34 of SRCAP

    Get PDF
    Background\ud Floating-Harbor syndrome (FHS) is a rare condition characterized by short stature, delays in expressive language, and a distinctive facial appearance. Recently, heterozygous truncating mutations in SRCAP were determined to be disease-causing. With the availability of a DNA based confirmatory test, we set forth to define the clinical features of this syndrome.\ud \ud Methods and results\ud Clinical information on fifty-two individuals with SRCAP mutations was collected using standardized questionnaires. Twenty-four males and twenty-eight females were studied with ages ranging from 2 to 52 years. The facial phenotype and expressive language impairments were defining features within the group. Height measurements were typically between minus two and minus four standard deviations, with occipitofrontal circumferences usually within the average range. Thirty-three of the subjects (63%) had at least one major anomaly requiring medical intervention. We did not observe any specific phenotype-genotype correlations.\ud \ud Conclusions\ud This large cohort of individuals with molecularly confirmed FHS has allowed us to better delineate the clinical features of this rare but classic genetic syndrome, thereby facilitating the development of management protocols.The authors would like to thank the families for their cooperation and permission to publish these findings. SdM would like to thank Barto Otten. Funding was provided by the Government of Canada through Genome Canada, the Canadian Institutes of Health Research (CIHR) and the Ontario Genomics Institute (OGI-049), by Genome Québec and Genome British Columbia, and the Manton Center for Orphan Disease Research at Children’s Hospital Boston. KMB is supported by a Clinical Investigatorship Award from the CIHR Institute of Genetics. AD is supported by NIH grant K23HD073351. BBAdV and HGB were financially supported by the AnEUploidy project (LSHG-CT-2006-37627). This work was selected for study by the FORGE Canada Steering Committee, which consists of K. Boycott (University of Ottawa), J. Friedman (University of British Columbia), J. Michaud (University of Montreal), F. Bernier (University of Calgary), M. Brudno (University of Toronto), B. Fernandez (Memorial University), B. Knoppers (McGill University), M. Samuels (Université de Montréal), and S. Scherer (University of Toronto). We thank the Galliera Genetic Bank - “Telethon Genetic Biobank Network” supported by Italian Telethon grants (project no. GTB07001) for providing us with specimens

    The phenotype of Floating-Harbor syndrome: Clinical characterization of 52 individuals with mutations in exon 34 of SRCAP

    Get PDF
    Background: Floating-Harbor syndrome (FHS) is a rare condition characterized by short stature, delays in expressive language, and a distinctive facial appearance. Recently, heterozygous truncating mutations in SRCAP were determined to be disease-causing. With the availability of a DNA based confirmatory test, we set forth to define the clinical features of this syndrome. Methods and results. Clinical information on fifty-two individuals with SRCAP mutations was collected using standardized questionnaires. Twenty-four males and twenty-eight females were studied with ages ranging from

    Early nutrition and metabolic outcome

    No full text
    corecore