5 research outputs found

    Interleukin-1 plays a major role in vascular inflammation and atherosclerosis in male apolipoprotein E-knockout mice

    Get PDF
    Objective: To examine the role of the balance between interleukin (IL)-1 and IL-1 receptor antagonist (IL-1Ra) in atherosclerosis and vascular inflammation. Methods: Transgenic (Tg) mice overexpressing either secreted IL-1Ra or intracellular IL-1Ra1 as well as IL-1Ra-deficient mice (IL-1Ra −/−) were crossed with apolipoprotein E-deficient mice (ApoE −/−). Results: In males fed a cholesterol-rich diet for 10 weeks, average atherosclerotic lesion area within aortic roots was significantly decreased in ApoE −/− secreted IL-1Ra Tg (−47%) and ApoE −/− intracellular IL-1Ra1 Tg (−40%) mice as compared to ApoE −/− non-Tg controls. The extent of sudanophilic lesions was reduced within the thoraco-abdominal aorta in ApoE −/− secreted IL-1Ra (−53%) and ApoE −/− intracellular IL-1Ra1 (−67%) Tg mice. In parallel experiments, we observed early mortality and illness among double deficient mice, whereas ApoE −/− IL-1Ra +/+ and ApoE +/+ IL-1Ra −/− mice were apparently healthy. After 7 weeks of diet, ApoE −/− IL-1Ra −/− mice exhibited massive aortic inflammation with destruction of the vascular architecture, but no signs of atherosclerosis. ApoE −/− IL-1Ra +/+ had atherosclerosis and a moderate inflammatory reaction, whereas ApoE +/+ IL-1Ra −/− mice were free of vascular lesions. Macrophages were present in large amounts within inflammatory lesions in the adventitia of ApoE −/− IL-1Ra −/− mice. Conclusion: Our results demonstrate that the IL-1/IL-1Ra ratio plays a critical role in the pathogenic mechanisms leading to vascular inflammation and atherosclerosis in ApoE −/− mic

    Intracellular interleukin-1 receptor antagonist type 1 antagonizes the stimulatory effect of interleukin-1 alpha precursor on cell motility

    No full text
    Interleukin (IL)-1alpha, a proinflammatory cytokine, is produced as a 33 kDa protein precursor (preIL-1alpha) which is cleaved to generate the 17 kDa C-terminal mature IL-1alpha (mIL-1alpha) and the 16kDa N-terminal IL-1alpha propiece (NIL-1alpha). The biological effect of IL-1alpha is regulated by the IL-1 receptor antagonist (IL-1Ra), its naturally occurring inhibitor. Four different isoforms of the IL-1Ra have been described, one secreted (sIL-1Ra) and three intracellular (icIL-1Ra1, 2, 3). Whether the icIL-1Ra1 isoform can antagonize some of the biological effects of intracellular IL-1alpha is still unknown. The aim of this study is to investigate effects of preIL-1alpha and icIL-1Ra1 on cell motility in stably transfected ECV304 cells. We show that expression of preIL-1alpha in ECV304 cells significantly increases cell motility. Furthermore, transfection with NIL-1alpha propiece also increases cell motility whereas this stimulatory effect was not observed by addition of exogenous mIL-1alpha, suggesting an intracellular effect of preIL-1alpha mediated by NIL-1alpha propiece. Co-transfection of ECV304 cells with icIL-1Ra1 completely antagonizes the stimulatory effect of preIL-1alpha and NIL-1alpha propiece on cell motility. In conclusion, NIL-1alpha propiece increases ECV304 cell motility and icIL-1Ra1 exerts intracellular functions regulating this stimulatory effect

    Defective initiation of glycosaminoglycan synthesis due to B3GALT6 mutations causes a pleiotropic Ehlers-Danlos-syndrome-like connective tissue disorder

    Get PDF
    Proteoglycans are important components of cell plasma membranes and extracellular matrices of connective tissues. They consist of glycosaminoglycan chains attached to a core protein via a tetrasaccharide linkage, whereby the addition of the third residue is catalyzed by galactosyltransferase II (beta 3GalT6), encoded by B3GALT6. Homozygosity mapping and candidate gene sequence analysis in three independent families, presenting a severe autosomal-recessive connective tissue disorder characterized by skin fragility, delayed wound healing, joint hyperlaxity and contractures, muscle hypotonia, intellectual disability, and a spondyloepimetaphyseal dysplasia with bone fragility and severe kyphoscoliosis, identified biallelic B3GALT6 mutation's, including homozygous missense mutations in family 1 (c.619G>C [p.Asp207His]) and family 3 (c.649G>A [p.Gly217Ser]) and compound heterozygous mutations in family 2 (c.323_344del [p.Ala108Glyfs*163], c.619G>C [p.Asp207His]). The phenotype overlaps with several recessive Ehlers-Danlos variants and spondyloepimetaphyseal dysplasia with joint hyperlaxity. Affected individuals' fibroblasts exhibited a large decrease in ability to prime glycosaminoglycan synthesis together with impaired glycanation of the small chondroitin/dermatan sulfate proteoglycan decorin, confirming beta 3GalT6 loss of function. Dermal electron microcopy disclosed abnormalities in collagen fibril organization, in line with the important regulatory role of decorin in this process. A strong reduction in heparan sulfate level was also observed, indicating that beta 3GalT6 deficiency alters synthesis of both main types of glycosaminoglycans. In vitro wound healing assay revealed a significant delay in fibroblasts from two index individuals, pointing to a role for glycosaminoglycan defect in impaired wound repair in vivo. Our study emphasizes a crucial role for beta 3GalT6 in multiple major developmental and pathophysiological processes
    corecore