184 research outputs found

    The Fate of Emotional Memories Over a Week: Does Sleep Play Any Role?

    Get PDF
    Although there is a wide consensus on how sleep processes declarative memories, how sleep affects emotional memories remains elusive. Moreover, studies assessing the long-term effect of sleep on emotional memory consolidation are scarce. Studies testing subclinical populations characterized by REM abnormalities are also lacking. Here we aimed to (i) investigate the fate of emotional memories and the potential unbinding (or preservation) between content and affective tone over time (i.e., 1 week), (ii) explore the role of seven nights of sleep (recorded via actigraphy) in emotional memory consolidation, and (iii) assess whether participants with self-reported mild-moderate depressive symptoms forget less emotional information compared to participants with low depression symptoms. We found that, although at the immediate recognition session emotional information was forgotten more than neutral information, a week later it was forgotten less than neutral information. This effect was observed both in participants with low and mild-moderate depressive symptoms. We also observed an increase in valence rating over time for negative pictures, whereas perceived arousal diminished a week later for both types of stimuli (unpleasant and neutral); an initial decrease was already observable at the immediate recognition session. Interestingly, we observed a negative association between sleep efficiency across the week and change in memory discrimination for unpleasant pictures over time, i.e., participants who slept worse were the ones who forgot less emotional information. Our results suggest that emotional memories are resistant to forgetting, particularly when sleep is disrupted, and they are not affected by non-clinical depression symptomatology

    Ultrastrong Magnon-Photon Coupling Achieved by Magnetic Films in Contact with Superconducting Resonators

    Full text link
    Coherent coupling between spin wave excitations (magnons) and microwave photons in a cavity may disclose new paths to unconventional phenomena as well as for novel applications. Here, we present a systematic investigation on YIG (Yttrium Iron Garnet) films on top of coplanar waveguide resonators made of superconducting YBCO. We first show that spin wave excitations with frequency higher than the Kittel mode can be excited by putting in direct contact a 5~μ\mum thick YIG film with the YBCO coplanar resonator (cavity frequency ωc/2π=8.65\omega_c/2 \pi = 8.65~GHz). With this configuration, we obtain very large values of the collective coupling strength λ/2π2\lambda/2 \pi \approx 2~GHz and cooperativity C=5×104C=5 \times 10^4. Transmission spectra are analyzed by a modified Hopfield model for which we provide an exact solution that allows us to well reproduce spectra by introducing a limited number of free parameters. It turns out that the coupling of the dominant magnon mode with photons exceeds 0.2 times the cavity frequency, thus demonstrating the achievement of the ultrastrong coupling regime with this architecture. Our analysis also shows a vanishing contribution of the diamagnetic term which is a peculiarity of pure spin systems

    The Fate of Emotional Memories Over a Week: Does Sleep Play Any Role?

    Get PDF
    Although there is a wide consensus on how sleep processes declarative memories, how sleep affects emotional memories remains elusive. Moreover, studies assessing the long-term effect of sleep on emotional memory consolidation are scarce. Studies testing subclinical populations characterized by REM abnormalities are also lacking. Here we aimed to (i) investigate the fate of emotional memories and the potential unbinding (or preservation) between content and affective tone over time (i.e., 1 week), (ii) explore the role of seven nights of sleep (recorded via actigraphy) in emotional memory consolidation, and (iii) assess whether participants with self-reported mild-moderate depressive symptoms forget less emotional information compared to participants with low depression symptoms. We found that, although at the immediate recognition session emotional information was forgotten more than neutral information, a week later it was forgotten less than neutral information. This effect was observed both in participants with low and mild-moderate depressive symptoms. We also observed an increase in valence rating over time for negative pictures, whereas perceived arousal diminished a week later for both types of stimuli (unpleasant and neutral); an initial decrease was already observable at the immediate recognition session. Interestingly, we observed a negative association between sleep efficiency across the week and change in memory discrimination for unpleasant pictures over time, i.e., participants who slept worse were the ones who forgot less emotional information. Our results suggest that emotional memories are resistant to forgetting, particularly when sleep is disrupted, and they are not affected by non-clinical depression symptomatology

    Service Orientation and the Smart Grid state and trends

    Get PDF
    The energy market is undergoing major changes, the most notable of which is the transition from a hierarchical closed system toward a more open one highly based on a “smart” information-rich infrastructure. This transition calls for new information and communication technologies infrastructures and standards to support it. In this paper, we review the current state of affairs and the actual technologies with respect to such transition. Additionally, we highlight the contact points between the needs of the future grid and the advantages brought by service-oriented architectures.

    The Contribution of Halos with Different Mass Ratios to the Overall Growth of Cluster-Sized Halos

    Get PDF
    We provide a new observational test for a key prediction of the \Lambda CDM cosmological model: the contributions of mergers with different halo-to-main-cluster mass ratios to cluster-sized halo growth. We perform this test by dynamically analyzing seven galaxy clusters, spanning the redshift range 0.13<zc<0.450.13 < z_c < 0.45 and caustic mass range 0.41.50.4-1.5 1015h0.73110^{15} h_{0.73}^{-1} M_{\odot}, with an average of 293 spectroscopically-confirmed bound galaxies to each cluster. The large radial coverage (a few virial radii), which covers the whole infall region, with a high number of spectroscopically identified galaxies enables this new study. For each cluster, we identify bound galaxies. Out of these galaxies, we identify infalling and accreted halos and estimate their masses and their dynamical states. Using the estimated masses, we derive the contribution of different mass ratios to cluster-sized halo growth. For mass ratios between ~0.2 and ~0.7, we find a ~1 σ\sigma agreement with \Lambda CDM expectations based on the Millennium simulations I and II. At low mass ratios, 0.2\lesssim 0.2, our derived contribution is underestimated since the detection efficiency decreases at low masses, 2×1014\sim 2 \times 10^{14} h0.731h_{0.73}^{-1} M_{\odot}. At large mass ratios, 0.7\gtrsim 0.7, we do not detect halos probably because our sample, which was chosen to be quite X-ray relaxed, is biased against large mass ratios. Therefore, at large mass ratios, the derived contribution is also underestimated.Comment: 25 pages, 16 figures, 6 tables, 2 machine readable tables, accepted for publication in ApJ, updated acknowledgements and data table format modifications mad

    Agreement on classification of clinical photographs of pigmentary lesions: exercise after a training course with young dermatologists.

    Get PDF
    Smartphone apps may help promoting the early diagnosis of melanoma. The reliability of specialist judgment on lesions should be assessed. Hereby, we evaluated the agreement of 6 young dermatologists, after a specific training. Clinical judgment was evaluated during 2 online sessions, 1 month apart, on a series of 45 pigmentary lesions. Lesions were classified as highly suspicious, suspicious, non-suspicious or not assessable. Cohen's and Fleiss' kappa were used to calculate intra- and inter-rater agreement. The overall intra-rater agreement was 0.42 (95% confidence interval - CI: 0.33-0.50), varying between 0.12-0.59 on single raters. The inter-rater agreement during the first phase was 0.29 (95% CI: 0.24-0.34). When considering the agreement for each category of judgment, kappa varied from 0.19 for not assessable to 0.48 for highly suspicious lesions. Similar results were obtained in the second exercise. The study showed a less than satisfactory agreement among young dermatologists. Our data point to the need for improving the reliability of the clinical diagnoses of melanoma especially when assessing small lesions and when dealing with thin melanomas at a population level

    CLASH: Mass Distribution in and around MACS J1206.2-0847 from a Full Cluster Lensing Analysis

    Get PDF
    We derive an accurate mass distribution of the galaxy cluster MACS J1206.2-0847 (z=0.439) from a combined weak-lensing distortion, magnification, and strong-lensing analysis of wide-field Subaru BVRIz' imaging and our recent 16-band Hubble Space Telescope observations taken as part of the Cluster Lensing And Supernova survey with Hubble (CLASH) program. We find good agreement in the regions of overlap between several weak and strong lensing mass reconstructions using a wide variety of modeling methods, ensuring consistency. The Subaru data reveal the presence of a surrounding large scale structure with the major axis running approximately north-west south-east (NW-SE), aligned with the cluster and its brightest galaxy shapes, showing elongation with a \sim 2:1 axis ratio in the plane of the sky. Our full-lensing mass profile exhibits a shallow profile slope dln\Sigma/dlnR\sim -1 at cluster outskirts (R>1Mpc/h), whereas the mass distribution excluding the NW-SE excess regions steepens further out, well described by the Navarro-Frenk-White form. Assuming a spherical halo, we obtain a virial mass M_{vir}=(1.1\pm 0.2\pm 0.1)\times 10^{15} M_{sun}/h and a halo concentration c_{vir} = 6.9\pm 1.0\pm 1.2 (\sim 5.7 when the central 50kpc/h is excluded), which falls in the range 4 <7 of average c(M,z) predictions for relaxed clusters from recent Lambda cold dark matter simulations. Our full lensing results are found to be in agreement with X-ray mass measurements where the data overlap, and when combined with Chandra gas mass measurements, yield a cumulative gas mass fraction of 13.7^{+4.5}_{-3.0}% at 0.7Mpc/h (\approx 1.7r_{2500}), a typical value observed for high mass clusters.Comment: Accepted by ApJ (30 pages, 17 figures), one new figure (Figure 10) added, minor text changes; a version with high resolution figures available at http://www.asiaa.sinica.edu.tw/~keiichi/upfiles/MACS1206/ms_highreso.pd

    Observational Constraints on the Ultra-high Energy Cosmic Neutrino Flux from the Second Flight of the ANITA Experiment

    Get PDF
    The Antarctic Impulsive Transient Antenna (ANITA) completed its second long-duration balloon flight in January 2009, with 31 days aloft (28.5 live days) over Antarctica. ANITA searches for impulsive coherent radio Cherenkov emission from 200 to 1200 MHz, arising from the Askaryan charge excess in ultra-high energy neutrino-induced cascades within Antarctic ice. This flight included significant improvements over the first flight in the payload sensitivity, efficiency, and a flight trajectory over deeper ice. Analysis of in-flight calibration pulses from surface and sub-surface locations verifies the expected sensitivity. In a blind analysis, we find 2 surviving events on a background, mostly anthropogenic, of 0.97+-0.42 events. We set the strongest limit to date for 1-1000 EeV cosmic neutrinos, excluding several current cosmogenic neutrino models.Comment: 6 pages, 5 figures, submitted to Phys. Rev.
    corecore