3,173 research outputs found

    Systematic errors in global air-sea CO2 flux caused by temporal averaging of sea-level pressure

    Get PDF
    International audienceLong-term temporal averaging of meteorological data, such as wind speed and air pressure, can cause large errors in air-sea carbon flux estimates. Other researchers have already shown that time averaging of wind speed data creates large errors in flux due to the non-linear dependence of the gas transfer velocity on wind speed (Bates and Merlivat, 2001). However, in general, wind speed is negatively correlated with air pressure, and a given fractional change in the pressure of dry air produces an equivalent fractional change in the atmospheric partial pressure of carbon dioxide (<i>p</i>CO<sub>2air</sub>). Thus low pressure systems cause a drop in <i>p</i>CO<sub>2air</sub>, which together with the associated high winds, promotes outgassing/reduces uptake of CO<sub>2</sub> from the ocean. Here we quantify the errors in global carbon flux estimates caused by using monthly or climatological pressure data to calculate <i>p</i>CO<sub>2air</sub> (and thus ignoring the covariance of wind and pressure) over the period 1990?1999, using two common parameterisations for gas transfer velocity (Wanninkhof, 1992 (W92) and Wanninkhof and McGillis, 1999 (WM99)). Results show that on average, compared with estimates made using 6 hourly pressure data, the global oceanic sink is systematically overestimated by 7% (W92) and 10% (WM99) when monthly mean pressure is used, and 9% (W92) and 12% (WM99) when climatological pressure is used

    Mode superposition in multi-degree of freedom systems using earthquake response spectrum data

    Get PDF
    Dynamic responses of a series of typical three-degree of freedom structures to strong-motion earthquake excitation were calculated by analog computer techniques and were compared with approximate responses obtained by a superposition of individual modes derived from response spectrum curves. The results indicate that a suitably weighted average of the sum of the absolute values of the individual modes and the square root of the sum of the squares of the modes will give a practical design criterion for the base shear forces in multi-story buildings. For critical designs, this weighted average reduces to the absolute sum of the modes, which is found to be close to the true value for a significantly high proportion of typical earthquake-structure combinations

    Influence of surface passivation on ultrafast carrier dynamics and terahertz radiation generation in GaAs

    Full text link
    The carrier dynamics of photoexcited electrons in the vicinity of the surface of (NH4)2S-passivated GaAs were studied via terahertz (THz) emission spectroscopy and optical-pump THz-probe spectroscopy. THz emission spectroscopy measurements, coupled with Monte Carlo simulations of THz emission, revealed that the surface electric field of GaAs reverses after passivation. The conductivity of photoexcited electrons was determined via optical-pump THz-probe spectroscopy, and was found to double after passivation. These experiments demonstrate that passivation significantly reduces the surface state density and surface recombination velocity of GaAs. Finally, we have demonstrated that passivation leads to an enhancement in the power radiated by photoconductive switch THz emitters, thereby showing the important influence of surface chemistry on the performance of ultrafast THz photonic devices.Comment: 4 pages, 3 figures, to appear in Applied Physics Letter

    Probing the exchange field of a quantum-dot spin valve by a superconducting lead

    Full text link
    Electrons in a quantum-dot spin valve, consisting of a single-level quantum dot coupled to two ferromagnetic leads with magnetizations pointing in arbitrary directions, experience an exchange field that is induced on the dot by the interplay of Coulomb interaction and quantum fluctuations. We show that a third, superconducting lead with large superconducting gap attached to the dot probes this exchange field very sensitively. In particular, we find striking signatures of the exchange field in the symmetric component of the supercurrent with respect to the bias voltage applied between the ferromagnets already for small values of the ferromagnets' spin polarization.Comment: published version, 10 pages, 7 figure

    Lithium and Lithium Depletion in Halo Stars on Extreme Orbits

    Full text link
    We have determined Li abundances in 55 metal-poor (3.6 < [Fe/H] < -0.7) stars with extreme orbital kinematics. We find the Li abundance in the Li-plateau stars and examine its decrease in low-temperature, low-mass stars. The Li observations are primarily from the Keck I telescope with HIRES (spectral resolution of ~48,000 and median signal-to-noise per pixel of 140). Abundances or upper limits were determined for Li for all the stars with typical errors of 0.06 dex. Our 14 stars on the Li plateau give A(Li) = log N(Li)/N(H) + 12.00 of 2.215 +-0.110, consistent with earlier results. We find a dependence of the Li abundance on metallicity as measured by [Fe/H] and the Fe-peak elements [Cr/H] and [Ni/H], with a slope of ~0.18. We also find dependences of A(Li) with the alpha elements, Mg, Ca, and Ti. For the n-capture element, Ba, the relation between A(Li) and [Ba/H] has a shallower slope of 0.13; over a range of 2.6 dex in [Ba/H], the Li abundance spans only a factor of two. We examined the possible trends of A(Li) with the characteristics of the orbits of our halo stars, but find no relationship with kinematic or dynamic properties. The stars cooler than the Li plateau are separated into three metallicity subsets. The decrease in A(Li) sets in at hotter temperatures at high metallicities than at low metallicities; this is in the opposite sense of the predictions for Li depletion from standard and non-standard models.Comment: 29 pages including 3 tables and 12 figures Accepted by The Astrophysical Journal, for the 1 November 2005 issue, v. 63

    Compliance error compensation in robotic-based milling

    Get PDF
    The paper deals with the problem of compliance errors compensation in robotic-based milling. Contrary to previous works that assume that the forces/torques generated by the manufacturing process are constant, the interaction between the milling tool and the workpiece is modeled in details. It takes into account the tool geometry, the number of teeth, the feed rate, the spindle rotation speed and the properties of the material to be processed. Due to high level of the disturbing forces/torques, the developed compensation technique is based on the non-linear stiffness model that allows us to modify the target trajectory taking into account nonlinearities and to avoid the chattering effect. Illustrative example is presented that deals with robotic-based milling of aluminum alloy

    Universal transport in 2D granular superconductors

    Full text link
    The transport properties of quench condensed granular superconductors are presented and analyzed. These systems exhibit transitions from insulating to superconducting behavior as a function of inter-grain spacing. Superconductivity is characterized by broad transitions in which the resistance drops exponentially with reducing temperature. The slope of the log R versus T curves turns out to be universaly dependent on the normal state film resistance for all measured granular systems. It does not depend on the material, critical temperature, geometry, or experimental set-up. We discuss possible physical scenarios to explain these findings.Comment: 4 pages, 3 figure

    Determination of micro-scale plastic strain caused by orthogonal cutting

    Get PDF
    An electron beam lithography technique has been used to produce microgrids in order to measure local plastic strains, induced during an orthogonal cutting process, at the microscopic scale in the shear zone and under the machined surface. Microgrids with a 10 μm pitch and a line width less than 1 μm have been printed on the polished surface of an aluminium alloy AA 5182 to test the applicability of the technique in metal cutting operations. Orthogonal cutting tests were carried out at 40 mm/s. Results show that the distortion of the grids could successfully be used to compute plastic strains due to orthogonal cutting with higher accuracy compared to other techniques reported in the literature. Strain maps of the machined specimens have been produced and show high-strain gradients very close to the machined surface with local values reaching 2.2. High-resolution strain measurements carried out in the primary deformation zone also provide new insight into the material deformation during the chip formation process
    corecore