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Abstract: 
An Electron Beam Lithography technique has been used to produce microgrids in order to 

measure local plastic strains, induced during an orthogonal cutting process, at the microscopic 

scale in the shear zone and under the machined surface. Microgrids with a 10 µm pitch and a 

line width less than 1µm have been printed on the polished surface of an aluminium alloy 

AA5182 to test the applicability of the technique in metal cutting operations. Orthogonal 

cutting tests were carried out at 40 mm/sec. Results show that the distortion of the grids could 

successfully be used to compute plastic strains due to orthogonal cutting with higher accuracy 

compared to other techniques reported in the literature. Strain maps of the machined specimens 

have been produced and show high strain gradients very close to the machined surface with 

local values reaching 2.2. High resolution strain measurements carried out in the primary 

deformation zone also provide new insight into the material deformation during the chip 

formation process. 
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1. Introduction 
Machining is a manufacturing process that is commonly used in the manufacture 

of mechanical components. During the process, parts of the workpiece are removed as 

chips through an interaction with a harder cutting tool. While the chips are forming, the 

material undergoes a severe plastic deformation which affects the integrity of the 

machined surface and changes the hardness as well as other mechanical properties of 

both the chip and the machined surface.  
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Several models including analytical and finite element models have been 

developed to simulate machining operations. Most of these models, e.g. the famous 

fundamental Merchant model [1], make the assumption of 2D plane strain orthogonal 

metal cutting conditions [1-7] and must be validated by comparing predicted results 

with available experimental data such as cutting forces [2-4] and residual stresses [5-7]. 

The distribution of plastic strains can also be used for the validation of cutting models 

as it directly shows the deformed state of the material and therefore provides more 

insight into the predictive capability of these models. 

Since the material deformation in metal cutting is highly localised near the 

machined surface and inside the chip formation zone, the determination of such strains 

requires the application of special techniques that produce measurements with high 

accuracy.  

The grid technique is one of the most accepted techniques to determine strain 

distributions and material flow in deformed specimens [8]. Using this technique, a well 

defined pattern of grids, whose size varies depending on the application, is laid on the 

surface of the workpiece material. Since the grids are bonded to the workpiece, they 

will undergo the same deformation as the workpiece material. By analysing the 

distortion of the deformed grids, the magnitude of plastic strains can be determined.  

Various methods including photolithography [9], scribing [10,11], 

electropolishing [12], deposition [13], electro-resist method [14] and micro electro-

lithography [15] have been used to produce microgrids in order to measure local in-

plane plastic strains [10, 12-15] and/or local displacement fields [11] in the loaded 

specimens. The reported size of the produced grids using the different techniques varies 

from 1 mm using scribing and deposition methods [10,13] down to 5µm, using gold 

dots, as in the micro electro-lithography method applied by Allais et al [15] to study the 

local deformation of metal matrix composites under tensile loading.   

Several attempts have also been made to use microgrids to analyse the material 

flow and plastic strains beneath the machined surface during chip formation. Bitans and 

Brown [16] studied the nature of material flow and shear plane angle during orthogonal 

cutting of a wax specimen using cast grids with a pith of 380µm. Childs [17] and 

Leopold and co-workers [18-20] used microgrids in combination with a visioplasticity 

technique to study flow patterns and velocity fields during orthogonal cutting. However 

the distortion of the grids was not used to determine plastic strains in the chip formation 

zone and below the machined surface.  Child [17] used scratched microgrids with a 
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pitch of 25 µm and a line width equal to 5 µm while Leopold et al. used printed and 

electro-polished grids with a pitch size ranging from 85 to 20 µm. An embossing 

method was developed to lay grids with a pitch of 12.7µm on the polished surface of 

orthogonally machined disc shaped specimens [21,22]. The deformed grids were 

analysed after machining to obtain plastic strains under the machined surface while 

strains in the chip formation zone were not measured.  

It is worth noting that scratches produced by inscribing or embossing methods to 

lay grids onto the surface of samples increase the local stress concentration which in 

turn may influence the material deformation [17,21,22], as stresses during the 

machining operations are very high and plastic deformation is highly localized. 

Additionally, the low definition of the produced engraved lines, along with the 

inconsistency in the width and spacing of the grid lines cannot generate high resolution 

strain measurements, especially in areas of high strain gradients as experienced by 

metals around the chip formation zone. 

A better grid definition was obtained using photo- resist [23] and photo printing 

methods [24,25]. Lee [23] measured plastic strains at the chip root printing square grids 

with a 50µm pitch while arrays of microgrids with a 20µm pitch and a line width equal 

to 5 µm were used by Sadat and Reddy [24,25].Plastic strain maps reported in [23] 

show zero strain for the material layers below the machined surface. This might have 

been due to the relatively large size of the printed grids that could not accurately show 

the highly localised material deformation in these layers.  Shear plastic strains were 

determined within the subsurface layers of the machined workpiece in Refs. [24,25] 

even though the accuracy of the measurements would have been affected by the 

relatively large width of the grid lines compared to the pitch size. In that study, no 

results related to the material deformation in the chip formation zone were reported.  

 In spite of all developments made with the application of microgrid techniques to 

metal cutting operations, very few works have reported on local strain measurements 

around the chip formation zone. Furthermore, none of the studies have produced results 

with the level of accuracy required to measure the full strain distribution in the highly 

localised deformation areas that surround the chip and below the machined surface 

where high strain gradients are generated. 

In the present paper Electron Beam Lithography (EBL) has been used to produce 

microgrids in order to measure plastic strains during a simple 2D orthogonal cutting 
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operation. Ultra-fine microgrids of gold with a pitch size of 10µm and a line width less 

than 1 micron has been laid on the surface of specimens. The distortion of the grids has 

been used to measure plastic strains below the machined surface and in the chip 

formation zone of orthogonally machined specimens with high accuracy.  
2. Experiment 

An experimental test rig was designed to locate test specimens that were to be 

machined under orthogonal cutting conditions. Orthogonal cutting has been adopted for 

the ease of interpretation of test results [21-25]. Details of the rig and testing 

methodology are given in section 2.2.  

Square cross section test specimens with a side size of 25 mm and a thickness of 

6 mm were manufactured from an aluminium alloy AA 5182 in a stress relieved 

condition, at 300 °C for an hour, after experiencing 50% reduction through a hot rolling 

process. A high speed steel cutting tool (K520- Dormer Co.) with back rake and 

clearance angles of '0
027 ′−  and '0

025 ′− , respectively, was used to machine the specimens.  

2.1. Microgrid Technique  

Figure 1 shows various steps required to print microgrids using Electron Beam 

Lithography (EBL) technique. PMMA (Poly Methyl Methacrylate) was used as the 

electro-resist resin which was spread over the polished surface of the specimens using a 

specially designed spreading machine, figure 1-a. The machine enabled accurate 

control of the thickness and the uniformity of the resin which are vitally important for 

creating high quality grids.  

The resin is spread under rotation of the specimen and the thickness is controlled 

by changing the rotational velocity of the motor through a frequency inverter. The resin 

was then polymerised at 140°C for 30 minutes to obtain a solid layer of plastic resin 

covering the polished surface of the specimen.  

A conventional Scanning Electron Microscope (SEM) was used to produce the 

microgrids by scanning the resin layer with the electron beam in a controlled way, 

figure 1-b.  

Accurate control of the stage displacement enabled grids to be printed along the 

edge of the specimen. Following scanning, the burnt resin was dissolved in a solution 

of Butanone and Propanol for about 90 seconds, figure 1-c. A thin layer of gold then 

coated the specimens, figure 1-d. Gold is used as it provides better contrast in an 

electron microscope compared to other techniques used to develop grids. Gold atoms 
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adhere to the surface of the specimens and fill the grooves created by the removed 

burnt resin, forming an array of straight orthogonal lines with fine intersections. The 

entire resin was then removed from the specimen leaving the printed connected square 

microgrids of gold with sharp corners on the surface, figure 1-e.  

 
Figure 1- Microgrid formation: (a) Resin spreading, (b) Irradiation of the resin by the electron beam, (c) 

Removing the burnt resin, (d) Gold coating, (e) Removing the remaining resin and developing the grids 

 

The produced microgrids with 3.5 μm  is shown in Figure 2. Even though it is 

possible to produce microgrids with smaller pitches, down to 1 micron, grids with a 

10μm pitch were considered to be suitable for this study.  

 
Figure 2- Microgrids with a 3.5µm pitch printed on the surface of specimens 

 

2.2. Cutting Test 

To facilitate cutting tests in orthogonal and plane strain conditions, a fixture was 

designed to be mounted on a servo-hydraulic test machine capable of performing 

tensile and compression tests. 

 In the fixture, figure 3, the tool holder is attached to the machine actuator which 

is located above the machine table. The tool holder contains a micrometer with an 

accuracy of 1μm to set the depth of cut along with a mechanism that clamps the cutting 

tool after setting the machining parameters. The specimens are fixed firmly in the 

fixture, which is bolted to the rigid machine table. The cutting operation is performed 
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by moving the cutting tool down towards the specimens after setting the cutting depth. 

The orthogonal cutting conditions are satisfied as the cutting edge is perpendicular to 

the direction of relative velocity between the tool and the specimen, which is the 

cutting velocity direction.  

A cutting speed of 40 mm/sec was used and the depth of cut was set to 0.5 mm to 

an accuracy of 1µm. A rapid disengagement of the cutting tool by a reverse movement 

of the tool was also implemented to freeze the chip formation process. The direction of 

the cutting tool movement was then reversed, leaving a part of the formed chip attached 

to the workpiece. This enabled the study of the material deformation during the chip 

formation process.  

A pair of samples was polished and microgrids were printed on one of them, 

figure 4.  The specimens were then placed in the fixture in such a way that their 

polished faces was in contact (figure 4) and then clamped firmly together. Compressive 

forces, due to clamping, press the specimens together restricting the out of plane 

displacement at the contact faces. This makes the specimens behave as one single part 

during the deformation. Under this condition the face on which the microgrids have 

been laid, which corresponds to the mid plane of the assembly, undergoes deformation 

assumed to be close to a plane strain mode with restricted side spreading. 
   

 
(a) 
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(b) 

Figure 3- Schematic of the cutting test setup (a) and machined specimens at the end of the cutting process (b) 

 

 
 

Figure 4- Polished specimens with the microgrids printed along an edge are clamped in the illustrated 

direction to satisfy plane strain and orthogonal cutting conditions 

Moreover the width of the cutting tool was chosen to be two times wider than the 

thickness of the specimens and the ratio of the cutting width to the depth of cut (uncut 

chip thickness) was greater than 24, in accordance with the assumption of orthogonal 

cutting [26]. 

3. Results 
After freezing the cutting operation, the two parts of the specimen were separated 

and the deformed microgrids observed with a SEM. Figure 5 shows the distorted grids 

in the primary shear zone and in the chip root area. Moreover, it reveals that the 

technique applied to freeze the chip formation process has been successful. The chip 

freezing method allows plastic strains in the shear zone and in the vicinity of the cutting 

tool to be investigated, figures 5. The distortion of the grids at the chip root, figure 5, 

shows with high resolution the material deformation as the cutting tool moves forward 

together with the chip formation process due to the well established shearing 

mechanism. [27].  
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Figure 5- The grids in the chip root in the stress relieved specimen 

The distorted grids were used to analyse the plastic deformation of the material 

during machining. Micrographs of the grids were taken before and after machining. A 

MATLAB subroutine, developed by Gutierrez [28], was then used to record the 

position of all grid intersections in both the undeformed and deformed configurations. 

Each grid element defined by four intersection points can be represented by two vectors 

XI and XII in the un-deformed configuration and xI and xII
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configuration. Under the framework of large strain deformation, the in-plane 

deformation gradient tensor F can then be derived: 

                                                                          (1) 

With xi and Xi

This non-singular deformation gradient tensor, F, can then be decomposed into a 

rigid rotation tensor R and a distortion tensor U as follows: 

 for i=1,2 being the vector coordinates in the deformed and 

undeformed configurations respectively. 

URF .=                                                                                                     (2) 

U can be diagonalised in an orthogonal base using the following equation: 

osition)for transp stands(t       DQQtU =                                                        (3) 
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with D being the diagonal tensor and Q a tensor giving the orientation of the 

principal directions of the distortion. The logarithmic strain tensor is then computed 

from: 

( )QDQtE Log ln=                                                                                      (4) 

Using the subroutine, plastic strains were calculated at the centroid of each grid 

element. Strain maps were then created by means of a surface mapping software, over 

the previously determined area, by interpolating between the data points at the centroid 

of the grids highlighted by small crosses in figures 6 and 8. 

The plastically deformed material below the machined surface is shown in figure 

6-a where the plastic strains were determined within the highlighted areas. The severe 

distortion of the grids reveals that the intensity of plastic strains decreases from the 

vicinity of the machined surface towards the centre of the specimen. Elongation of the 

grids also indicates that the cutting operation was performed from left to right (X 

direction) on the micrograph.  

The plastic strain component in the cutting direction ( XXε ), figure 6-b, is 

compressive while YYε  , figure 6-c, is tensile and smaller than XXε , in magnitude. 

Analysis of the strains maps shows that plastic strains are uniformly distributed, from 

near the machined surface towards the centre of specimen. 

Using calculated strains a quantitative distribution of the plastic strains below the 

machined surface were also plotted in figure 7.  All data points in the highlighted areas 

of figure 6 are illustrated in the plots in such a way that each horizontal set of data 

points belongs to a row of grids at the similar depth. The plots also represent the large 

strain gradient near the surface wherein plastic strains change drastically in the first 

20μm below the machined surfaces. However the scale bars shown on the strain maps, 

figure 6 show different magnitudes for plastic strains compared to those shown in 

figure 7. This is related to the interpolation function used by the mapping software to 

produce strain maps.  
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(a) 

 
(b) 

 
(c) 

 
( d) 

Figure 6- (a) The grids distortion below the machined surface with the small crosses at the centroid of the 

analysed grids, (b) Distribution of plastic strain in X ( XXε ) and (c) Y directions ( YYε ) and (d) shear strain 

distribution ( XYε )  

Plastic strains determined in the primary deformation zone are given in Figure 8 

along with the distorted grids within the chip formation zone. The configuration of the 

deformed grids illustrates that as the cutting tool moves forward the material ahead of 

the tool tip is separated into two parts. One part forms the chip and experiences the 

subsequent deformation in front of the tool rake face, while the other one is compressed 

under the flank face of the tool to be a part of the machined surface. Plastic strain maps 

show how the chip forms in relation to the strain distribution. As the cutting tool moves 

forward the axial plastic strains ( XXε and YYε ) increase. They reach their maximum 

value at about the same location highlighted by the dashed line D in the figures 8-b and 

8-d. However, the location of the maximum shear strain in figure 8-c does not coincide 

with that of the maximum value for XXε and YYε .  
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(a) 

 
(b) 

Figure 7- Plastic strains (a) XXε  and (b) YYε  distributions through the thickness of specimens along the 

cutting direction  

 
(a) 

 

(b) 

 
(c) 

 
(d) 

Figure 8- (a) Analysed grid region and (b, c and d) plastic strain distribution in the primary shear zone in the 

specimen 

4. Discussion 
Results show that Electron Beam Lithography (EBL) is a suitable technique to 

produce microgrids in order to accurately study the material deformation during 
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orthogonal cutting. Unlike other techniques [16, 17, 21, 22] the EBL technique does not 

damage the surface of the specimens and therefore does not create any stress 

concentrations which might interfere with the material deformation during the chip 

formation. Moreover, using the EBL technique it is possible to produce microgrids with 

very fine pitches that are not achievable with scratching [16, 17], embossing [21,22] or 

even photo resist methods [23-25]. 

 With the higher resolution of the grids produced by the EBL technique, large 

plastic strain gradients can be quantified, especially close to the machined surface 

where accurate measurements are needed. As mentioned by Leopold [18] such 

measurements were not possible using other techniques [18-20]. Plastic strain maps, 

shown in figure 6, revealed how plastic strains vary along the cutting direction and 

below the machined surface. The high strain gradient generated by the cutting process 

very close to the machined surface, shown in Fig. 7, has been resolved accurately using 

the technique developed in this work. Such a localised strain variation, with local strain 

values up to 2.2, could not be measured using other techniques such as the photo-resist 

method used by Lee [23] which showed zero plastic strains below the machined 

surface. This might have been due to the grid pitch used, 20μm, which is relatively 

large in comparison to the scale of the local strain fluctuations. In the present work, the 

accuracy of the EBL technique is further increased through the use of gold as the grid 

material since gold provides a good contrast in the SEM with respect to the underlying 

deformed metal.  This is of particular importance in areas of high strain gradients where 

the grids are severely distorted and therefore more difficult to resolve. 

The distortion of the grids shown in figure 8 illustrates how the material deforms 

in the chip formation zone where the deformation is highly localized. This localization 

of the deformation is likely to result in plastic instability that is reported as one of the 

major mechanisms of chip formation [27,29]. These instabilities produce shear bands 

that are more visible in high speed cutting and hard turning processes [23,30]. Strain 

maps in figure 8 show the distribution of the axial plastic strain as well as the position 

of the shear band (dashed line D in figure 8-c) that was not reported in previous studies.  

The borders of the analyzed region are similar to those predicted by the slip-line 

field theory method [31]. However, the variation of plastic strains reveals that severe 

axial deformation is followed by deformation of the material in shear mode which may 

result in the creation of shear bands.  
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Results obtained above show that the experimental procedure developed in this 

work provides the means to accurately measure plastic strains in the various 

deformation zones during the orthogonal cutting process with high resolution compared 

to other methods. The range of application of the EBL technique could also be 

extended to other machining operations whereby the workpiece experiences higher 

temperatures close to the melting temperature of gold. In that case grids could be 

engraved using etching as described in studies related to the hot deformation of steels 

using plane strain compression tests [32,33]. 

The information gained from these measurements can therefore bring more 

insight into the mechanisms under which the material deforms during the chip 

formation. Results could also be useful to models that simulate the chip formation 

process and for which experimental validation is needed.                 

5. Conclusions 
An Electron Beam Lithography technique was used to produce microgrids in 

order to study the material deformation during orthogonal cutting. Ultra-fine microgrids 

with a pitch of 10μm and a line width of less than 1μm were printed on the surface of 

specimens made out of an aluminium alloy AA 5182. Results from the orthogonal 

cutting tests showed that using the produced microgrids, plastic strains can be 

accurately determined from the distorted microgrids, even in regions with large strain 

gradients.  Strain distributions have been measured at the micro-scale in various 

deformation areas surrounding the chip formation zone with higher accuracy than other 

techniques reported in the literature. Local strain values as high as 2.2 have been 

measured close to the machined surface where grids become severely distorted. The 

experimental method developed in this work which has been validated for the simple 

orthogonal cutting process could also be extended to other cutting operations. 
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