14 research outputs found

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    Immunohistochemical Detection of CTGF in the Human Eye

    No full text
    Purpose/Aim of the study: Connective tissue growth factor (CTGF) is a key player in the control of extracellular matrix remodeling, fibrosis, and angiogenesis. It is also involved in the modification of the trabecular meshwork, thus potentially modulating outflow facility and intraocular pressure (IOP). As a consequence, CTGF might be relevant for the development of elevated IOP, a major risk factor in glaucoma-pathogenesis. While comprehensive information on the origins of CTGF in the human eye is not available, the goal of this study is to identify ocular sources of CTGF using morphological methods.Materials and Methods: Human donor eyes were prepared for immunohistochemical analysis of CTGF, -smooth muscle-actin (ASMA), and CD31. Confocal laser scanning microscopy was used for documentation.Results: In the cornea, CTGF-immunoreactivity (CTGF-IR) was detected in the epithelium, mainly in basal layers, stromal keratinocytes, and endothelial cells. Adjacent conjunctiva showed also CTGF-IR in epithelial cells. In the iris, both, the sphincter and dilator muscles displayed CGTF-IR, as did iris and ciliary body vessels, deriving at this location from the vascular endothelium, as detected with CD31, but not from vascular smooth muscle cells, as detected with ASMA. In the ciliary body, CTGF-IR was detected in smooth-muscle cells of the ciliary muscle and further in the non-pigmented epithelium. In the retina, CTGF-IR was detected in the NFL and weakly in the IPL/OPL. In the choroid, the choriocapillaris and blood vessels displayed CTGF-IR. Further, few cells in the optic nerve head and the lamina cribrosa were CTGF-positive.Conclusion: CTGF was detected in various structures of the human eye. Since CTGF has been also described in aqueous humor, the identified structures might be the sources of CTGF in the aqueous humor. By means of aqueous flow, CTGF is transported into the trabecular meshwork, where it could change outflow facility and therefore affecting IOP homeostasis

    Immunohistochemical Detection of CTGF in the Human Eye

    No full text
    <p><i>Purpose/Aim of the study</i>: Connective tissue growth factor (CTGF) is a key player in the control of extracellular matrix remodeling, fibrosis, and angiogenesis. It is also involved in the modification of the trabecular meshwork, thus potentially modulating outflow facility and intraocular pressure (IOP). As a consequence, CTGF might be relevant for the development of elevated IOP, a major risk factor in glaucoma-pathogenesis. While comprehensive information on the origins of CTGF in the human eye is not available, the goal of this study is to identify ocular sources of CTGF using morphological methods.</p> <p><i>Materials and Methods</i>: Human donor eyes were prepared for immunohistochemical analysis of CTGF, α-smooth muscle-actin (ASMA), and CD31. Confocal laser scanning microscopy was used for documentation.</p> <p><i>Results</i>: In the cornea, CTGF-immunoreactivity (CTGF-IR) was detected in the epithelium, mainly in basal layers, stromal keratinocytes, and endothelial cells. Adjacent conjunctiva showed also CTGF-IR in epithelial cells. In the iris, both, the sphincter and dilator muscles displayed CGTF-IR, as did iris and ciliary body vessels, deriving at this location from the vascular endothelium, as detected with CD31, but not from vascular smooth muscle cells, as detected with ASMA. In the ciliary body, CTGF-IR was detected in smooth-muscle cells of the ciliary muscle and further in the non-pigmented epithelium. In the retina, CTGF-IR was detected in the NFL and weakly in the IPL/OPL. In the choroid, the choriocapillaris and blood vessels displayed CTGF-IR. Further, few cells in the optic nerve head and the lamina cribrosa were CTGF-positive.</p> <p><i>Conclusion</i>: CTGF was detected in various structures of the human eye. Since CTGF has been also described in aqueous humor, the identified structures might be the sources of CTGF in the aqueous humor. By means of aqueous flow, CTGF is transported into the trabecular meshwork, where it could change outflow facility and therefore affecting IOP homeostasis.</p

    Exome Array Analysis of Susceptibility to Pneumococcal Meningitis

    No full text
    Host genetic variability may contribute to susceptibility of bacterial meningitis, but which genes contribute to the susceptibility to this complex disease remains undefined. We performed a genetic association study in 469 community-acquired pneumococcal meningitis cases and 2072 population-based controls from the Utrecht Health Project in order to find genetic variants associated with pneumococcal meningitis susceptibility. A HumanExome BeadChip was used to genotype 102,097 SNPs in the collected DNA samples. Associations were tested with the Fisher exact test. None of the genetic variants tested reached Bonferroni corrected significance (p-value <5 × 10(-7)). Our strongest signals associated with susceptibility to pneumococcal meningitis were rs139064549 on chromosome 1 in the COL11A1 gene (p = 1.51 × 10(-6); G allele OR 3.21 [95% CI 2.05-5.02]) and rs9309464 in the EXOC6B gene on chromosome 2 (p = 6.01 × 10(-5); G allele OR 0.66 [95% CI 0.54-0.81]). The sequence kernel association test (SKAT) tests for associations between multiple variants in a gene region and pneumococcal meningitis susceptibility yielded one significant associated gene namely COL11A1 (p = 1.03 × 10(-7)). Replication studies are needed to validate these results. If replicated, the functionality of these genetic variations should be further studied to identify by which means they influence the pathophysiology of pneumococcal meningitis

    Genome-wide association meta-analysis identifies risk loci for abdominal aortic aneurysm and highlights PCSK9 as a therapeutic target

    Get PDF
    Abdominal aortic aneurysm (AAA) is a common disease with substantial heritability. In this study, we performed a genome-wide association meta-analysis from 14 discovery cohorts and uncovered 141 independent associations, including 97 previously unreported loci. A polygenic risk score derived from meta-analysis explained AAA risk beyond clinical risk factors. Genes at AAA risk loci indicate involvement of lipid metabolism, vascular development and remodeling, extracellular matrix dysregulation and inflammation as key mechanisms in AAA pathogenesis. These genes also indicate overlap between the development of AAA and other monogenic aortopathies, particularly via transforming growth factor β signaling. Motivated by the strong evidence for the role of lipid metabolism in AAA, we used Mendelian randomization to establish the central role of nonhigh-density lipoprotein cholesterol in AAA and identified the opportunity for repurposing of proprotein convertase, subtilisin/kexin-type 9 (PCSK9) inhibitors. This was supported by a study demonstrating that PCSK9 loss of function prevented the development of AAA in a preclinical mouse model. Genome-wide association meta-analysis of AAA identifies 121 independent risk loci and highlights potential therapeutic targets such as proprotein convertase, subtilisin/kexin-type 9 (PCSK9)

    Genome-wide association meta-analysis identifies risk loci for abdominal aortic aneurysm and highlights PCSK9 as a therapeutic target

    No full text
    Abdominal aortic aneurysm (AAA) is a common disease with substantial heritability. In this study, we performed a genome-wide association meta-analysis from 14 discovery cohorts and uncovered 141 independent associations, including 97 previously unreported loci. A polygenic risk score derived from meta-analysis explained AAA risk beyond clinical risk factors. Genes at AAA risk loci indicate involvement of lipid metabolism, vascular development and remodeling, extracellular matrix dysregulation and inflammation as key mechanisms in AAA pathogenesis. These genes also indicate overlap between the development of AAA and other monogenic aortopathies, particularly via transforming growth factor β signaling. Motivated by the strong evidence for the role of lipid metabolism in AAA, we used Mendelian randomization to establish the central role of nonhigh-density lipoprotein cholesterol in AAA and identified the opportunity for repurposing of proprotein convertase, subtilisin/kexin-type 9 (PCSK9) inhibitors. This was supported by a study demonstrating that PCSK9 loss of function prevented the development of AAA in a preclinical mouse model
    corecore