371 research outputs found
Variational approximation for mixtures of linear mixed models
Mixtures of linear mixed models (MLMMs) are useful for clustering grouped
data and can be estimated by likelihood maximization through the EM algorithm.
The conventional approach to determining a suitable number of components is to
compare different mixture models using penalized log-likelihood criteria such
as BIC.We propose fitting MLMMs with variational methods which can perform
parameter estimation and model selection simultaneously. A variational
approximation is described where the variational lower bound and parameter
updates are in closed form, allowing fast evaluation. A new variational greedy
algorithm is developed for model selection and learning of the mixture
components. This approach allows an automatic initialization of the algorithm
and returns a plausible number of mixture components automatically. In cases of
weak identifiability of certain model parameters, we use hierarchical centering
to reparametrize the model and show empirically that there is a gain in
efficiency by variational algorithms similar to that in MCMC algorithms.
Related to this, we prove that the approximate rate of convergence of
variational algorithms by Gaussian approximation is equal to that of the
corresponding Gibbs sampler which suggests that reparametrizations can lead to
improved convergence in variational algorithms as well.Comment: 36 pages, 5 figures, 2 tables, submitted to JCG
A Measurement of Psi(2S) Resonance Parameters
Cross sections for e+e- to hadons, pi+pi- J/Psi, and mu+mu- have been
measured in the vicinity of the Psi(2S) resonance using the BESII detector
operated at the BEPC. The Psi(2S) total width; partial widths to hadrons,
pi+pi- J/Psi, muons; and corresponding branching fractions have been determined
to be Gamma(total)= (264+-27) keV; Gamma(hadron)= (258+-26) keV, Gamma(mu)=
(2.44+-0.21) keV, and Gamma(pi+pi- J/Psi)= (85+-8.7) keV; and Br(hadron)=
(97.79+-0.15)%, Br(pi+pi- J/Psi)= (32+-1.4)%, Br(mu)= (0.93+-0.08)%,
respectively.Comment: 8 pages, 6 figure
Partial Wave Analysis of
BES data on are presented. The
contribution peaks strongly near threshold. It is fitted with a
broad resonance with mass MeV, width MeV. A broad resonance peaking at 2020 MeV is also required
with width MeV. There is further evidence for a component
peaking at 2.55 GeV. The non- contribution is close to phase
space; it peaks at 2.6 GeV and is very different from .Comment: 15 pages, 6 figures, 1 table, Submitted to PL
Toward an internally consistent astronomical distance scale
Accurate astronomical distance determination is crucial for all fields in
astrophysics, from Galactic to cosmological scales. Despite, or perhaps because
of, significant efforts to determine accurate distances, using a wide range of
methods, tracers, and techniques, an internally consistent astronomical
distance framework has not yet been established. We review current efforts to
homogenize the Local Group's distance framework, with particular emphasis on
the potential of RR Lyrae stars as distance indicators, and attempt to extend
this in an internally consistent manner to cosmological distances. Calibration
based on Type Ia supernovae and distance determinations based on gravitational
lensing represent particularly promising approaches. We provide a positive
outlook to improvements to the status quo expected from future surveys,
missions, and facilities. Astronomical distance determination has clearly
reached maturity and near-consistency.Comment: Review article, 59 pages (4 figures); Space Science Reviews, in press
(chapter 8 of a special collection resulting from the May 2016 ISSI-BJ
workshop on Astronomical Distance Determination in the Space Age
Heavy quarkonium: progress, puzzles, and opportunities
A golden age for heavy quarkonium physics dawned a decade ago, initiated by
the confluence of exciting advances in quantum chromodynamics (QCD) and an
explosion of related experimental activity. The early years of this period were
chronicled in the Quarkonium Working Group (QWG) CERN Yellow Report (YR) in
2004, which presented a comprehensive review of the status of the field at that
time and provided specific recommendations for further progress. However, the
broad spectrum of subsequent breakthroughs, surprises, and continuing puzzles
could only be partially anticipated. Since the release of the YR, the BESII
program concluded only to give birth to BESIII; the -factories and CLEO-c
flourished; quarkonium production and polarization measurements at HERA and the
Tevatron matured; and heavy-ion collisions at RHIC have opened a window on the
deconfinement regime. All these experiments leave legacies of quality,
precision, and unsolved mysteries for quarkonium physics, and therefore beg for
continuing investigations. The plethora of newly-found quarkonium-like states
unleashed a flood of theoretical investigations into new forms of matter such
as quark-gluon hybrids, mesonic molecules, and tetraquarks. Measurements of the
spectroscopy, decays, production, and in-medium behavior of c\bar{c}, b\bar{b},
and b\bar{c} bound states have been shown to validate some theoretical
approaches to QCD and highlight lack of quantitative success for others. The
intriguing details of quarkonium suppression in heavy-ion collisions that have
emerged from RHIC have elevated the importance of separating hot- and
cold-nuclear-matter effects in quark-gluon plasma studies. This review
systematically addresses all these matters and concludes by prioritizing
directions for ongoing and future efforts.Comment: 182 pages, 112 figures. Editors: N. Brambilla, S. Eidelman, B. K.
Heltsley, R. Vogt. Section Coordinators: G. T. Bodwin, E. Eichten, A. D.
Frawley, A. B. Meyer, R. E. Mitchell, V. Papadimitriou, P. Petreczky, A. A.
Petrov, P. Robbe, A. Vair
A Study of J/psi-->gamma gamma V(rho,phi) Decays with the BESII Detector
Using a sample of events collected with the BESII
detector, radiative decays , where or ,
are studied. A resonance around 1420 MeV/c (X(1424)) is observed in the
mass spectrum. Its mass and width are measured to be MeV/c and MeV/c,
respectively, and its branching ratio is determined to be . A
search for yields a 95% C.L. upper limit .Comment: 10 pages, 5 figures, submitted to PL
Evidence of psi(3770) non-DD-bar Decay to J/psi pi+pi-
Evidence of decays to a non- final state is
observed. A total of \psi(3770) \to \PPJP events are
obtained from a data sample of 27.7 taken at center-of-mass
energies around 3.773 GeV using the BES-II detector at the BEPC. The branching
fraction is determined to be BF(\psi(3770) \to \PPJP)=(0.34\pm 0.14 \pm
0.09)%, corresponding to the partial width of \Gamma(\psi(3770) \to \PPJP) =
(80 \pm 33 \pm 23) keV.Comment: 8 pages, 7 figures, Submitted to Physics Letters
Synthesis of advanced ceramics by hydrothermal crystallization and modified related methods
High-dimensional maximum marginal likelihood item factor analysis by adaptive quadrature
Although the Bock–Aitkin likelihood-based estimation method for factor analysis of dichotomous item response data has important advantages over classical analysis of item tetrachoric correlations, a serious limitation of the method is its reliance on fixed-point Gauss-Hermite (G-H) quadrature in the solution of the likelihood equations and likelihood-ratio tests. When the number of latent dimensions is large, computational considerations require that the number of quadrature points per dimension be few. But with large numbers of items, the dispersion of the likelihood, given the response pattern, becomes so small that the likelihood cannot be accurately evaluated with the sparse fixed points in the latent space. In this paper, we demonstrate that substantial improvement in accuracy can be obtained by adapting the quadrature points to the location and dispersion of the likelihood surfaces corresponding to each distinct pattern in the data. In particular, we show that adaptive G-H quadrature, combined with mean and covariance adjustments at each iteration of an EM algorithm, produces an accurate fast-converging solution with as few as two points per dimension. Evaluations of this method with simulated data are shown to yield accurate recovery of the generating factor loadings for models of upto eight dimensions. Unlike an earlier application of adaptive Gibbs sampling to this problem by Meng and Schilling, the simulations also confirm the validity of the present method in calculating likelihood-ratio chi-square statistics for determining the number of factors required in the model. Finally, we apply the method to a sample of real data from a test of teacher qualifications.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43596/1/11336_2003_Article_1141.pd
- …
