28 research outputs found

    Design And Fabrication Of Two-dimensional Hexagonal Photonic Crystals With A Linear Waveguide In Erbium Doped Geo2-bi2o 3-pbo-tio2 Glasses

    Get PDF
    In this work, we designed and recorded two-dimensional Hexagonal Photonic Crystals (2D-HPC) layers, with a linear waveguide, in erbium doped GeO 2-Bi2O3-PbO-TiO2 glassy films, by combining the techniques of holographic recording and femtosecond (fs) laser micromachining. The 2D-HPC is recorded holographically in a photoresist film coated on a glass substrate by exposing the sample to the same interference pattern twice and rotating the sample of 60° between the exposures. After the development a two dimensional hexagonal array of photoresist columns remain on the glass substrate. The recording of the waveguide is made by a fs laser micromachining system focused at sample surface. The laser spot produces the ablation of the photoresist columns generating a defect line in the periodic hexagonal array. After the recording of the photoresist template, the erbium doped GeO2-Bi2O3-PbO-TiO2 film is evaporated on the photoresist and finally the photoresist template is removed using acetone. The design of the geometrical parameters of the 2D-HPC is performed by calculation of the dispersion mode curves of the photonic crystal using a 2D finite element method. The proper geometrical parameters depend on both the refractive index of the glass film and thickness. Such parameters as well as the period of the 2D-HPC have been defined in order to obtain a photonic band gap in the region of erbium luminescence band. In such condition the erbium luminescence will propagate only through the waveguide. © 2013 SPIE.8776The Society of Photo-Optical Instrumentation Engineers (SPIE)Notomi, M., Shinya, A., Kuramochi, E., Photonic crystals: Towards ultrasmall lightwave circuits (2004) NTTTech. Rev., 2, pp. 36-47Chow, E., Lin, S.Y., Jonhson, S.G., Villeneuve, P.R., Joannopoulos, J.D., Wendt, J.R., Vawter, G.A., Alleman, A., Three-dimensional control of light in a two-dimensional photonic crystal slab (2000) Nature, 407, pp. 983-986Sharp, D.N., Campbell, M., Dedman, E.R., Harrison, M.T., Denning, R.G., Turberfield, A.J., Photoniccrystals for the visible spectrum by holographic lithography (2002) Opt. Quantum Electron, 34, pp. 3-12Carlsson, N., Ikeda, N., Sugimoto, Y., Asakawa, K., Takemori, T., Katayama, Y., Kawai, N., Inoue, K., Design, nano-fabication and analysis of near-infrared 2D photonic crystal air-bridge structures (2002) Opt. Quantum Electron, 34, pp. 123-131Joannopoulos, J.D., Meade, R.D., Winn, J.N., (1995) Photonic Crystals, , Princeton University PressVilleneuve, P.R., Piché, M., Photonic band gaps in two-dimensional square and hexagonal lattices (1992) Phys. Rev. B, 46, pp. 4969-4972Cheng, C.C., Scherer, A., Fabrication of photonic band-gap crystals (1995) J. Vac. Sci. Technol. B, 13, pp. 2696-2700Lai, N.D., Liang, W.P., Lin, J.H., Hsu, C.C., Lin, C.H., Fabrication of two-and three-dimensional periodic structures by multi-exposure of two-beam interference technique (2005) Opt. Express, 13, pp. 9605-9611. , 11O'Brien, J., Kuang, W., Photonic crystal lasers, cavities, and waveguides (2005) Enc. Mod. Optics, 2005, pp. 146-155Gattass, R.R., Mazur, E., Femtosecond laser micromachining in transparent materials (2008) Nat. Photonics, 2 (4), pp. 219-22

    XAF1 as a modifier of p53 function and cancer susceptibility

    Get PDF
    Cancer risk is highly variable in carriers of the common TP53-R337H founder allele, possibly due to the influence of modifier genes. Whole-genome sequencing identified a variant in the tumor suppressor XAF1 (E134*/Glu134Ter/rs146752602) in a subset of R337H carriers. Haplotype-defining variants were verified in 203 patients with cancer, 582 relatives, and 42,438 newborns. The compound mutant haplotype was enriched in patients with cancer, conferring risk for sarcoma (P = 0.003) and subsequent malignancies (P = 0.006). Functional analyses demonstrated that wild-type XAF1 enhances transactivation of wild-type and hypomorphic TP53 variants, whereas XAF1-E134* is markedly attenuated in this activity. We propose that cosegregation of XAF1-E134* and TP53-R337H mutations leads to a more aggressive cancer phenotype than TP53-R337H alone, with implications for genetic counseling and clinical management of hypomorphic TP53 mutant carriers.Fil: Pinto, Emilia M.. St. Jude Children's Research Hospital; Estados UnidosFil: Figueiredo, Bonald C.. Instituto de Pesquisa Pelé Pequeno Principe; BrasilFil: Chen, Wenan. St. Jude Children's Research Hospital; Estados UnidosFil: Galvao, Henrique C.R.. Hospital de Câncer de Barretos; BrasilFil: Formiga, Maria Nirvana. A.c.camargo Cancer Center; BrasilFil: Fragoso, Maria Candida B.V.. Universidade de Sao Paulo; BrasilFil: Ashton Prolla, Patricia. Universidade Federal do Rio Grande do Sul; BrasilFil: Ribeiro, Enilze M.S.F.. Universidade Federal do Paraná; BrasilFil: Felix, Gabriela. Universidade Federal da Bahia; BrasilFil: Costa, Tatiana E.B.. Hospital Infantil Joana de Gusmao; BrasilFil: Savage, Sharon A.. National Cancer Institute; Estados UnidosFil: Yeager, Meredith. National Cancer Institute; Estados UnidosFil: Palmero, Edenir I.. Hospital de Câncer de Barretos; BrasilFil: Volc, Sahlua. Hospital de Câncer de Barretos; BrasilFil: Salvador, Hector. Hospital Sant Joan de Deu Barcelona; EspañaFil: Fuster Soler, Jose Luis. Hospital Clínico Universitario Virgen de la Arrixaca; EspañaFil: Lavarino, Cinzia. Hospital Sant Joan de Deu Barcelona; EspañaFil: Chantada, Guillermo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. St. Jude Children's Research Hospital; Estados UnidosFil: Vaur, Dominique. Comprehensive Cancer Center François Baclesse; FranciaFil: Odone Filho, Vicente. Universidade de Sao Paulo; BrasilFil: Brugières, Laurence. Institut de Cancerologie Gustave Roussy; FranciaFil: Else, Tobias. University of Michigan; Estados UnidosFil: Stoffel, Elena M.. University of Michigan; Estados UnidosFil: Maxwell, Kara N.. University of Pennsylvania; Estados UnidosFil: Achatz, Maria Isabel. Hospital Sirio-libanês; BrasilFil: Kowalski, Luis. A.c.camargo Cancer Center; BrasilFil: De Andrade, Kelvin C.. National Cancer Institute; Estados UnidosFil: Pappo, Alberto. St. Jude Children's Research Hospital; Estados UnidosFil: Letouze, Eric. Centre de Recherche Des Cordeliers; FranciaFil: Latronico, Ana Claudia. Universidade de Sao Paulo; BrasilFil: Mendonca, Berenice B.. Universidade de Sao Paulo; BrasilFil: Almeida, Madson Q.. Universidade de Sao Paulo; BrasilFil: Brondani, Vania B.. Universidade de Sao Paulo; BrasilFil: Bittar, Camila M.. Universidade Federal do Rio Grande do Sul; BrasilFil: Soares, Emerson W.S.. Hospital Do Câncer de Cascavel; BrasilFil: Mathias, Carolina. Universidade Federal do Paraná; BrasilFil: Ramos, Cintia R.N.. Hospital de Câncer de Barretos; BrasilFil: Machado, Moara. National Cancer Institute; Estados UnidosFil: Zhou, Weiyin. National Cancer Institute; Estados UnidosFil: Jones, Kristine. National Cancer Institute; Estados UnidosFil: Vogt, Aurelie. National Cancer Institute; Estados UnidosFil: Klincha, Payal P.. National Cancer Institute; Estados UnidosFil: Santiago, Karina M.. A.c.camargo Cancer Center; BrasilFil: Komechen, Heloisa. Instituto de Pesquisa Pelé Pequeno Principe; BrasilFil: Paraizo, Mariana M.. Instituto de Pesquisa Pelé Pequeno Principe; BrasilFil: Parise, Ivy Z.S.. Instituto de Pesquisa Pelé Pequeno Principe; BrasilFil: Hamilton, Kayla V.. St. Jude Children's Research Hospital; Estados UnidosFil: Wang, Jinling. St. Jude Children's Research Hospital; Estados UnidosFil: Rampersaud, Evadnie. St. Jude Children's Research Hospital; Estados UnidosFil: Clay, Michael R.. St. Jude Children's Research Hospital; Estados UnidosFil: Murphy, Andrew J.. St. Jude Children's Research Hospital; Estados UnidosFil: Lalli, Enzo. Institut de Pharmacologie Moléculaire et Cellulaire; FranciaFil: Nichols, Kim E.. St. Jude Children's Research Hospital; Estados UnidosFil: Ribeiro, Raul C.. St. Jude Children's Research Hospital; Estados UnidosFil: Rodriguez-Galindo, Carlos. St. Jude Children's Research Hospital; Estados UnidosFil: Korbonits, Marta. Queen Mary University of London; Reino UnidoFil: Zhang, Jinghui. St. Jude Children's Research Hospital; Estados UnidosFil: Thomas, Mark G.. Colegio Universitario de Londres; Reino UnidoFil: Connelly, Jon P.. St. Jude Children's Research Hospital; Estados UnidosFil: Pruett-Miller, Shondra. St. Jude Children's Research Hospital; Estados UnidosFil: Diekmann, Yoan. Colegio Universitario de Londres; Reino UnidoFil: Neale, Geoffrey. St. Jude Children's Research Hospital; Estados UnidosFil: Wu, Gang. St. Jude Children's Research Hospital; Estados UnidosFil: Zambetti, Gerard P.. St. Jude Children's Research Hospital; Estados Unido

    Plasma glial fibrillary acidic protein is raised in progranulin-associated frontotemporal dementia

    Get PDF
    Background There are few validated fluid biomarkers in frontotemporal dementia (FTD). Glial fibrillary acidic protein (GFAP) is a measure of astrogliosis, a known pathological process of FTD, but has yet to be explored as potential biomarker. Methods Plasma GFAP and neurofilament light chain (NfL) concentration were measured in 469 individuals enrolled in the Genetic FTD Initiative: 114 C9orf72 expansion carriers (74 presymptomatic, 40 symptomatic), 119 GRN mutation carriers (88 presymptomatic, 31 symptomatic), 53 MAPT mutation carriers (34 presymptomatic, 19 symptomatic) and 183 non-carrier controls. Biomarker measures were compared between groups using linear regression models adjusted for age and sex with family membership included as random effect. Participants underwent standardised clinical assessments including the Mini-Mental State Examination (MMSE), Frontotemporal Lobar Degeneration-C linical Dementia Rating scale and MRI. Spearman's correlation coefficient was used to investigate the relationship of plasma GFAP to clinical and imaging measures. Results Plasma GFAP concentration was significantly increased in symptomatic GRN mutation carriers (adjusted mean difference from controls 192.3 pg/mL, 95% CI 126.5 to 445.6), but not in those with C9orf72 expansions (9.0, -61.3 to 54.6), MAPT mutations (12.7, -33.3 to 90.4) or the presymptomatic groups. GFAP concentration was significantly positively correlated with age in both controls and the majority of the disease groups, as well as with NfL concentration. In the presymptomatic period, higher GFAP concentrations were correlated with a lower cognitive score (MMSE) and lower brain volume, while in the symptomatic period, higher concentrations were associated with faster rates of atrophy in the temporal lobe. Conclusions Raised GFAP concentrations appear to be unique to GRN-related FTD, with levels potentially increasing just prior to symptom onset, suggesting that GFAP may be an important marker of proximity to onset, and helpful for forthcoming therapeutic prevention trials

    Photoinduced Birefringence In Di-azo Compounds In Polystyrene And Poly(methyl Methacrylate) Guest-host Systems

    No full text
    An investigation is presented of the optical storage capability, via photoinduced birefringence, for three di-azo compounds (Sudan dyes) incorporated into two polymer matrices, namely poly(methyl methacrylate) (PMMA) and polystyrene (PS). The optical birefringence was induced in the samples by using a diode-pumped frequency doubled Nd:YAG at 532 nm, while a He-Ne laser light at 632.8 nm was used to measure the induced birefringence in the sample. The results show lower dye mobility in PS than in PMMA matrices owing to the lower free volume that interferes with the efficiency of the birefringence photoinduced process. Some of the reasons for the lower efficiency of the induced birefringence of di-azo compounds compared to the mono-azo dyes are also discussed. © 2006 Elsevier B.V. All rights reserved.302216221Sekkat, Z., Dumont, M., (1991) Appl. Phys. B-Photophys. Laser Chem., 53, p. 121Natansohn, A., Rochon, P., Gosselin, J., Xie, S., (1992) Macromolecules, 25, p. 2268Xie, S., Natansohn, A.., Rochon, P., (1993) Chem. Mater., 5, p. 403Meng, X., Natansohn, A., Rochon, P., (1996) J. Polym. Sci. Part B-Polym. Phys., 34, p. 1461Meng, X., Natansohn, A., Barrett, C., Rochon, P., (1996) Macromolecules, 29, p. 946Mendonça, C.R., dos Santos Jr., D.S., Balogh, D.T., Dhanabalan, A., Giacometti, J.A., Zilio, S.C., Oliveira Jr., O.N., (2001) Polymer, 42, p. 6539Meng, X., Natansohn, A., Rochon, P., (1997) Polymer, 38, p. 2677Yesodha, S.K., Pillai, C.K.S., Tsutsumi, N., (2004) Progr. Polym. Sci, 29, p. 45dos Santos Jr., D.S., Bassi, A., Rodrigues, J.J., Misoguti, L., Oliveira Jr., O.N., Mendonça, C.R., (2003) Biomacromolecules, 4, p. 1502Ahlheim, M., Lehr, F., (1995) Macromol. Chem. Phys., 196, p. 243Andrade, A.A., Yamaki, S.B., Misoguti, L., Zilio, S.C., Atvars, T.D.Z., Oliveira Jr., O.N., Mendonça, C.R., (2004) Opt. Mater., 27, p. 441de Oliveira, M.G., Yamaki, S.B., Atvars, T.D.Z., (2004) J. Brazil Chem. Soc., 15, p. 253Christoff, M., Yamaki, S.B., de Oliveira, M.G., Atvars, T.D.Z., (2004) J. Appl. Polym. Sci., 92, p. 830Suzuki, H., (1967) An Application of Molecular Orbital Theory, , Academic Press, New YorkHooker, J.C., Burghardt, W.R., Torkelson, J.M., (1999) J. Chem. Phys., 111, p. 2779Dhanabalan, A., Mendonça, C.R., Balogh, D.T., Misoguti, L., Constantino, C.J.L., Giacometti, J.A., Zilio, S.C., Oliveira Jr., O.N., (1999) Macromolecules, 32, p. 5277dos Santos Jr., D.S., Mendonça, C.R., Balogh, D.T., Dhanabalan, A., Giacometti, J.A., Zilio, S.C., Oliveira Jr., O.N., (2001) Synthetic Met., 121, p. 1479Natansohn, A., Rochon, P., (2002) Chem. Rev., 102, p. 4139Zucolotto, V., Mendonça, C.R., dos Santos Jr., D.S., Balogh, D.T., Zilio, S.C., Oliveira Jr., O.N., Constantino, C.J.L., Aroca, R.F., (2002) Polymer, 43, p. 4645Zucolotto, V., Neto, N.M.B., Rodrigues, J.J., Constantino, C.J.L., Zilio, S.C., Mendonça, C.R., Aroca, R.F., Oliveira Jr., O.N., (2004) J. Nanosci. Nanotechnol., 4, p. 855Zucolotto, V., Strack, P.J., Santos, F.R., Balogh, D.T., Constantino, C.J.L., Mendonça, C.R., Oliveira Jr., O.N., (2004) Thin Solid Films, 453-54, p. 110Camilo, C.S., dos Santos Jr., D.S., Rodrigues, J.J., Vega, M.L., Campana, S.P., Oliveira Jr., O.N., Mendonça, C.R., (2003) Biomacromolecules, 4, p. 1583Christoff, M., Atvars, T.D.Z., (1999) Macromolecules, 32, p. 6093Victor, J.G., Torkelson, J.M., (1987) Macromolecules, 20, p. 2241Victor, J.G., Torkelson, J.M., (1988) Macromolecules, 21, p. 3490Bohlen, J., Kirchheim, R., (2001) Macromolecules, 34, p. 4210Scmitz, H., Muller-Plathe, F., (2000) J. Chem. Phys., 112, p. 104

    Two-photon Absorption Spectrum In Diazoaromatic Compounds

    No full text
    This Letter studies the degenerate two-photon absorption (2PA) spectra of three diazoaromatic compounds using Z-scan with fs-pulses. The 2PA spectra exhibit resonant enhancement of the nonlinearity as the excitation approaches the linear absorption. The absence of 2PA to the ππ* band is related to the weaker donor/acceptor groups, and lower symmetry of diazoaromatic compounds, in agreement with our semi-empirical calculations. The higher magnitude of the 2PA cross-section, in comparison with single azoaromatics, demonstrates the positive effect of increasing conjugation. The decrease of 2PA cross-section with temperature is attributed to thermally induced torsions, which decreases the effective conjugation of diazoaromatic molecules. © 2008 Elsevier B.V. All rights reserved.4634-6360363Prasad, P.N., Willians, D.J., (1991) Introduction to Nonlinear Optical Effects in Molecules and Polymers, , Wiley Interscience, New YorkKawata, S., Sun, H.B., Tanaka, T., Takada, K., (2001) Nature, 412, p. 697Sun, H.B., Kawata, S., (2004) Advances in Polymer Science: NMR - 3D Analysis - Photopolymerization, , Springer-Verlag, Berlin p. 169Kawata, S., Kawata, Y., (2000) Chem. Rev., 100, p. 1777Mendonca, C.R., (2007) Opt. Commun., 273, p. 435Belfield, K.D., Ren, X., Van Stryland, E.W., Hagan, D.J., Dubikovski, V., Meisak, E.J., (2000) J. Am. Chem. Soc., 122, p. 1217Denk, W., Strickler, J.H., Webb, W.W., (1990) Science, 248, p. 73Kohler, R.H., Cao, J., Zipfel, W.R., Webb, W.W., Hansen, M.R., (1997) Science, 276, p. 2039Bhawalkar, J.D., He, G.S., Prasad, P.N., (1996) Rep. Prog. Phys., 59, p. 1041Herman, B., Wang, X.F., Wodnicki, P., Perisamy, A., Mahajan, N., Berry, G., Gordon, G., (1999) Applied Fluorescence in Chemistry Biology and Medicine, p. 496. , Retting B.S.W., Schrader S., and Seifert H. (Eds), Springer, New YorkZhou, G.Y., Wang, C., Lei, H., Wang, D., Shao, Z.S., Jiang, M.H., (2001) Chin. Phys. Lett., 18, p. 1120Oliveira, S.L., Correa, D.S., Misoguti, L., Constantino, C.J.L., Aroca, R.F., Zilio, S.C., Mendonca, C.R., (2005) Adv. Mater., 17, p. 1890Albota, M., (1998) Science, 281, p. 1653Belfield, K.D., Hagan, D.J., Van Stryland, E.W., Schafer, K.J., Negres, R.A., (1999) Org. Lett., 1, p. 1575Morel, Y., Stephan, O., Andraud, C., Baldeck, P.L., (2001) Synth. Met., 124, p. 237Wang, X.M., Wang, D., Zhou, G.Y., Yu, W.T., Zhou, Y.F., Fang, Q., Jiang, M.H., (2001) J. Mater. Chem., 11, p. 1600Reinhardt, B.A., (1998) Chem. Mater., 10, p. 1863Rochon, P., Gosselin, J., Natansohn, A., Xie, S., (1992) Appl. Phys. Lett., 60, p. 4Jiang, X.L., Li, L., Kumar, J., Kim, D.Y., Shivshankar, V., Tripathy, S.K., (1996) Appl. Phys. Lett., 68, p. 2619Jager, M., (1998) J. Opt. Soc. Am. B-Opt. Phys., 15, p. 781Cherioux, F., Audebert, P., Maillotte, H., Grossard, L., Hernandez, F.E., Lacourt, A., (1997) Chem. Mater., 9, p. 2921De Boni, L., (2002) Chem. Phys. Lett., 361, p. 209Antonov, L., Kamada, K., Ohta, K., Kamounah, F.S., (2003) Phys. Chem. Chem. Phys., 5, p. 1193De Boni, L., Misoguti, L., Zilio, S.C., Mendonca, C.R., (2005) ChemPhysChem, 6, p. 1121Neves, U.M., De Boni, L., Ye, Z.H., Bu, X.R., Mendonca, C.R., (2007) Chem. Phys. Lett., 441, p. 221De Boni, L., Piovesan, E., Misoguti, L., Zilio, S.C., Mendonca, C.R., (2007) J. Phys. Chem. A, 111, p. 6222Sheik-Bahae, M., Said, A.A., Wei, T.H., Hagan, D.J., Van Stryland, E.W., (1990) IEEE J. Quant. Electron., 26, p. 760Correa, D.S., De Boni, L., Misoguti, L., Cohanoschi, I., Hernandez, F.E., Mendonca, C.R., (2007) Opt. Commun., 277, p. 440Franken, P.A., Ward, J.F., (1963) Rev. Mod. Phys., 35, p. 23Orr, B.J., Ward, J.F., (1971) Mol. Phys., 20, p. 513Kamada, K., Ohta, K., Yoichiro, I., Kondo, K., (2003) Chem. Phys. Lett., 372, p. 386Mazumdar, S., Guo, D.D., Dixit, S.N., (1993) Synth. Met., 57, p. 3881Dirk, C.W., Cheng, L.T., Kuzyk, M.G., (1992) Int. J. Quant. Chem., 43, p. 27Birge, R.R., Pierce, B.M., (1979) J. Chem. Phys., 70, p. 165Rumi, M., (2000) J. Am. Chem. Soc., 122, p. 9500Zojer, E., Beljonne, D., Kogej, T., Vogel, H., Marder, S.R., Perry, J.W., Bredas, J.L., (2002) J. Chem. Phys., 116, p. 3646Kogej, T., Beljonne, D., Meyers, F., Perry, J.W., Marder, S.R., Bredas, J.L., (1998) Chem. Phys. Lett., 298, p. 1Andrade, A.A., Yamaki, S.B., Misoguti, L., Zilio, S.C., Atvars, T.D.Z., Oliveira, O.N., Mendonca, C.R., (2004) Opt. Mater., 27, p. 441Day, P.N., Nguyen, K.A., Pachter, R., (2005) J. Phys. Chem. B, 109, p. 1803Bicknell, R.T.M., Davies, D.B., Lawrence, K.G., (1982) J. Chem. Soc.-Faraday Trans. I, 78, p. 159
    corecore