462 research outputs found
Design of a nasal spray based on cardiospermum halicacabum extract loaded in phospholipid vesicles enriched with gelatin or chondroitin sulfate
The extract of Cardiospermum halicacabum L. (C. halicacabum) obtained from flower, leaf and vine was loaded into modified phospholipid vesicles aiming at obtaining sprayable, biocompatible and effective nasal spray formulations for the treatment of nasopharyngeal diseases. Penetration enhancer-containing vesicles (PEVs) and hyalurosomes were formulated, and stabilized by adding a commercial gelatin from fish (20 mg/mL) or chondroitin sulfate from catshark cartilages (Scyliorhi-nus canicula, 20 mg/mL). Cryo-TEM images confirmed the formation of spherical vesicles, while photon correlation spectroscopy analysis disclosed the formation of small and negatively-charged vesicles. PEVs were the smaller vesicles (~100 nm) along with gelatin-hyalurosomes (~120 nm), while chondroitin-PEVs and chondroitin-hyalurosomes were larger (~160 nm). Dispersions prepared with chondroitin sulfate were more homogeneous, as the polydispersity index was ~0.15. The in vitro analysis of the droplet size distribution, average velocity module and spray cone angle suggested a good spray-ability and deposition of formulations in the nasal cavity, as the mean diameter of the droplets was in the range recommended by the Food and Drug Administration for nasal targets. The spray plume analysis confirmed the ability of PEVs, gelatin-PEVs, hyalurosomes and gelatin-hyalurosomes to be atomized in fine droplets homogenously distributed in a full cone plume, with an angle ranging from 25 to 30◦ . Moreover, vesicles were highly biocompatible and capable of protecting the epithelial cells against oxidative damage, thus preventing the inflammatory state
Burn mass casualty incidents in Europe: A European response plan within the European Union Civil Protection Mechanism
Background: Burn care is centralized in highly specialized burn centers in Europe. These centers are of limited capacity and may be overwhelmed by a sudden surge in case of a burn mass casualty incident. Prior incidents in Europe and abroad have sustained high standards of care through well-orchestrated responses to share the burden of care in several burn centers. A burn mass casualty incident in Romania in 2015 sparked an initiative to strengthen the existing EU mechanisms. This paper aims to provide insight into developing a response plan for burn mass casualties within the EU Civil Protection Mechanism.
Methods: The European Burns Association drafted medical guidelines for burn mass casualty incidents based on a literature review and an in-depth analysis of the Romanian incident. An online questionnaire surveyed European burn centers and EU States for burn mass casualty preparedness.
Results: The Romanian burn mass casualty in 2015 highlighted the lack of a burn-specific mechanism, leading to the late onset of international transfers. In Europe, 71% of respondents had existing mass casualty response plans, though only 35% reported having a burn-specific plan. A burns response plan for burn mass casualties was developed and adopted as a Commission staff working document in preparation for further implementation. The plan builds on the existing Union Civil Protection Mechanism framework and the standards of the WHO Emergency Medical Teams initiative to provide 1) burn assessment teams for specialized in-hospital triage of patients, 2) specialized burn care across European burn centers, and 3) medevac capacities from participating states.
Conclusion: The European burn mass casualty response plan could enable the delivery of high-level burn care in the face of an overwhelming incident in an affected European country. Further steps for integration and implementation of the plan within the Union Civil Protection Mechanism framework are needed.publishedVersio
MAGIC observations of MWC 656, the only known Be/BH system
Context: MWC 656 has recently been established as the first observationally
detected high-mass X-ray binary system containing a Be star and a black hole
(BH). The system has been associated with a gamma-ray flaring event detected by
the AGILE satellite in July 2010. Aims: Our aim is to evaluate if the MWC 656
gamma-ray emission extends to very high energy (VHE > 100 GeV) gamma rays.
Methods. We have observed MWC 656 with the MAGIC telescopes for 23 hours
during two observation periods: between May and June 2012 and June 2013. During
the last period, observations were performed contemporaneously with X-ray
(XMM-Newton) and optical (STELLA) instruments. Results: We have not detected
the MWC 656 binary system at TeV energies with the MAGIC Telescopes in either
of the two campaigns carried out. Upper limits (ULs) to the integral flux above
300 GeV have been set, as well as differential ULs at a level of 5% of
the Crab Nebula flux. The results obtained from the MAGIC observations do not
support persistent emission of very high energy gamma rays from this system at
a level of 2.4% the Crab flux.Comment: Accepted for publication in A&A. 5 pages, 2 figures, 2 table
The major upgrade of the MAGIC telescopes, Part II: A performance study using observations of the Crab Nebula
MAGIC is a system of two Imaging Atmospheric Cherenkov Telescopes located in
the Canary island of La Palma, Spain. During summer 2011 and 2012 it underwent
a series of upgrades, involving the exchange of the MAGIC-I camera and its
trigger system, as well as the upgrade of the readout system of both
telescopes. We use observations of the Crab Nebula taken at low and medium
zenith angles to assess the key performance parameters of the MAGIC stereo
system. For low zenith angle observations, the standard trigger threshold of
the MAGIC telescopes is ~50GeV. The integral sensitivity for point-like sources
with Crab Nebula-like spectrum above 220GeV is (0.66+/-0.03)% of Crab Nebula
flux in 50 h of observations. The angular resolution, defined as the sigma of a
2-dimensional Gaussian distribution, at those energies is < 0.07 degree, while
the energy resolution is 16%. We also re-evaluate the effect of the systematic
uncertainty on the data taken with the MAGIC telescopes after the upgrade. We
estimate that the systematic uncertainties can be divided in the following
components: < 15% in energy scale, 11-18% in flux normalization and +/-0.15 for
the energy spectrum power-law slope.Comment: 21 pages, 25 figures, accepted for publication in Astroparticle
Physic
Measurement of the Crab Nebula spectrum over three decades in energy with the MAGIC telescopes
The MAGIC stereoscopic system collected 69 hours of Crab Nebula data between
October 2009 and April 2011. Analysis of this data sample using the latest
improvements in the MAGIC stereoscopic software provided an unprecedented
precision of spectral and night-by-night light curve determination at gamma
rays. We derived a differential spectrum with a single instrument from 50 GeV
up to almost 30 TeV with 5 bins per energy decade. At low energies, MAGIC
results, combined with Fermi-LAT data, show a flat and broad Inverse Compton
peak. The overall fit to the data between 1 GeV and 30 TeV is not well
described by a log-parabola function. We find that a modified log-parabola
function with an exponent of 2.5 instead of 2 provides a good description of
the data (). Using systematic uncertainties of red the MAGIC and
Fermi-LAT measurements we determine the position of the Inverse Compton peak to
be at (53 3stat + 31syst -13syst) GeV, which is the most precise
estimation up to date and is dominated by the systematic effects. There is no
hint of the integral flux variability on daily scales at energies above 300 GeV
when systematic uncertainties are included in the flux measurement. We consider
three state- of-the-art theoretical models to describe the overall spectral
energy distribution of the Crab Nebula. The constant B-field model cannot
satisfactorily reproduce the VHE spectral measurements presented in this work,
having particular difficulty reproducing the broadness of the observed IC peak.
Most probably this implies that the assumption of the homogeneity of the
magnetic field inside the nebula is incorrect. On the other hand, the
time-dependent 1D spectral model provides a good fit of the new VHE results
when considering a 80 {\mu}G magnetic field. However, it fails to match the
data when including the morphology of the nebula at lower wavelengths.Comment: accepted by JHEAp, 9 pages, 6 figure
MAGIC detection of short-term variability of the high-peaked BL Lac object 1ES 0806+524
The high-frequency-peaked BL Lac (HBL) 1ES 0806+524 (z = 0.138) was
discovered in VHE rays in 2008. Until now, the broad-band spectrum of
1ES 0806+524 has been only poorly characterized, in particular at high
energies. We analysed multiwavelength observations from rays to radio
performed from 2011 January to March, which were triggered by the high activity
detected at optical frequencies. These observations constitute the most precise
determination of the broad-band emission of 1ES 0806+524 to date. The
stereoscopic MAGIC observations yielded a -ray signal above 250 GeV of
per cent of the Crab Nebula flux with a statistical
significance of 9.9 . The multiwavelength observations showed
significant variability in essentially all energy bands, including a VHE
-ray flare that lasted less than one night, which provided
unprecedented evidence for short-term variability in 1ES 0806+524. The spectrum
of this flare is well described by a power law with a photon index of between 150 GeV and 1 TeV and an integral flux of
per cent of the Crab Nebula flux above 250 GeV. The spectrum during the
non-flaring VHE activity is compatible with the only available VHE observation
performed in 2008 with VERITAS when the source was in a low optical state. The
broad-band spectral energy distribution can be described with a one-zone
Synchrotron Self Compton model with parameters typical for HBLs, indicating
that 1ES 0806+524 is not substantially different from the HBLs previously
detected.Comment: 12 pages, 8 figures, 3 tables, accepted 2015 April 20 for publication
in Monthly Notices of the Royal Astronomical Society Main Journa
Detection of bridge emission above 50 GeV from the Crab pulsar with the MAGIC telescopes
The Crab pulsar is the only astronomical pulsed source detected at very high
energy (VHE, E>100GeV) gamma-rays. The emission mechanism of VHE pulsation is
not yet fully understood, although several theoretical models have been
proposed. In order to test the new models, we measured the light curve and the
spectra of the Crab pulsar with high precision by means of deep observations.
We analyzed 135 hours of selected MAGIC data taken between 2009 and 2013 in
stereoscopic mode. In order to discuss the spectral shape in connection with
lower energies, 4.6 years of {\it Fermi}-LAT data were also analyzed. The known
two pulses per period were detected with a significance of and
. In addition, significant emission was found between the two
pulses with . We discovered the bridge emission above 50 GeV
between the two main pulses. This emission can not be explained with the
existing theories. These data can be used for testing new theoretical models.Comment: 5 pages, 4 figure
Probing the very-high-energy gamma-ray spectral curvature in the blazar PG 1553+113 with the MAGIC telescopes
PG 1553+113 is a very-high-energy (VHE, ) -ray
emitter classified as a BL Lac object. Its redshift is constrained by
intergalactic absorption lines in the range . The MAGIC telescopes
have monitored the source's activity since 2005. In early 2012, PG 1553+113 was
found in a high-state, and later, in April of the same year, the source reached
its highest VHE flux state detected so far. Simultaneous observations carried
out in X-rays during 2012 April show similar flaring behaviour. In contrast,
the -ray flux at observed by Fermi-LAT is
compatible with steady emission. In this paper, a detailed study of the flaring
state is presented. The VHE spectrum shows clear curvature, being well fitted
either by a power law with an exponential cut-off or by a log-parabola. A
simple power-law fit hypothesis for the observed shape of the PG 1553+113 VHE
-ray spectrum is rejected with a high significance (fit probability
P=2.6 ). The observed curvature is compatible with the
extragalactic background light (EBL) imprint predicted by current generation
EBL models assuming a redshift . New constraints on the redshift are
derived from the VHE spectrum. These constraints are compatible with previous
limits and suggest that the source is most likely located around the optical
lower limit, , based on the detection of Ly absorption. Finally,
we find that the synchrotron self-Compton (SSC) model gives a satisfactory
description of the observed multi-wavelength spectral energy distribution
during the flare.Comment: 13 pages, 7 figures, accepted for publication in MNRA
First broadband characterization and redshift determination of the VHE blazar MAGIC J2001+439
We aim to characterize the broadband emission from 2FGL J2001.1+4352, which
has been associated with the unknown-redshift blazar MG4 J200112+4352. Based on
its gamma-ray spectral properties, it was identified as a potential very high
energy (VHE; E > 100 GeV) gamma-ray emitter. The source was observed with MAGIC
first in 2009 and later in 2010 within a multi-instrument observation campaign.
The MAGIC observations yielded 14.8 hours of good quality stereoscopic data.
The object was monitored at radio, optical and gamma-ray energies during the
years 2010 and 2011. The source, named MAGIC J2001+439, is detected for the
first time at VHE with MAGIC at a statistical significance of 6.3 {\sigma} (E >
70 GeV) during a 1.3-hour long observation on 2010 July 16. The
multi-instrument observations show variability in all energy bands with the
highest amplitude of variability in the X-ray and VHE bands. We also organized
deep imaging optical observations with the Nordic Optical Telescope in 2013 to
determine the source redshift. We determine for the first time the redshift of
this BL Lac object through the measurement of its host galaxy during low blazar
activity. Using the observational evidence that the luminosities of BL Lac host
galaxies are confined to a relatively narrow range, we obtain z = 0.18 +/-
0.04. Additionally, we use the Fermi-LAT and MAGIC gamma-ray spectra to provide
an independent redshift estimation, z = 0.17 +/- 0.10. Using the former (more
accurate) redshift value, we adequately describe the broadband emission with a
one-zone SSC model for different activity states and interpret the few-day
timescale variability as produced by changes in the high-energy component of
the electron energy distribution.Comment: 17 pages, 15 figures, Accepted for publication in A&
The 2009 multiwavelength campaign on Mrk 421: Variability and correlation studies
We performed a 4.5-month multi-instrument campaign (from radio to VHE gamma
rays) on Mrk421 between January 2009 and June 2009, which included VLBA,
F-GAMMA, GASP-WEBT, Swift, RXTE, Fermi-LAT, MAGIC, and Whipple, among other
instruments and collaborations. Mrk421 was found in its typical (non-flaring)
activity state, with a VHE flux of about half that of the Crab Nebula, yet the
light curves show significant variability at all wavelengths, the highest
variability being in the X-rays. We determined the power spectral densities
(PSD) at most wavelengths and found that all PSDs can be described by
power-laws without a break, and with indices consistent with pink/red-noise
behavior. We observed a harder-when-brighter behavior in the X-ray spectra and
measured a positive correlation between VHE and X-ray fluxes with zero time
lag. Such characteristics have been reported many times during flaring
activity, but here they are reported for the first time in the non-flaring
state. We also observed an overall anti-correlation between optical/UV and
X-rays extending over the duration of the campaign.
The harder-when-brighter behavior in the X-ray spectra and the measured
positive X-ray/VHE correlation during the 2009 multi-wavelength campaign
suggests that the physical processes dominating the emission during non-flaring
states have similarities with those occurring during flaring activity. In
particular, this observation supports leptonic scenarios as being responsible
for the emission of Mrk421 during non-flaring activity. Such a temporally
extended X-ray/VHE correlation is not driven by any single flaring event, and
hence is difficult to explain within the standard hadronic scenarios. The
highest variability is observed in the X-ray band, which, within the one-zone
synchrotron self-Compton scenario, indicates that the electron energy
distribution is most variable at the highest energies.Comment: Accepted for publication in A&A, 18 pages, 14 figures (v2 has a small
modification in the acknowledgments, and also corrects a typo in the field
"author" in the metadata
- …