598 research outputs found

    Trends in application of NIR and hyperspectral imaging for food authentication

    Get PDF
    Food fraud can cause damage to consumer health and affect their confidence, destroy brands and generate large economic losses in the industry. Food authenticity allows to identify if food composition, geographical origin, genetic variety and farming system corresponds to what has been declared on the label. Although there are currently standardized methods to identify certain adulterants, the complexity of the food, the complexity of the supply chain and the appearance of new adulterants require the continuous development of analytical techniques to detect food fraud. NIR and Hyperspectral imaging (HSI) in tandem with chemometrics are non-destructive, non-invasive and accurate techniques for food authentication. This review focuses on NIR and HIS approaches to food authentication, including adulteration by substitution, geographical origin and farming system. In this context, the advances in NIR and HSI approaches reported since 2014 are discussed regarding their potential use in food authentication. Both techniques have shown to have efficiency, precision and selectivity to detect adulterants and identify geographic origin, genetic variety and farming system. Portability and remote access are shown as the next step for the industrialization of NIR and HSI devices

    Improved reliability of perfusion estimation in dynamic susceptibility contrast MRI by using the arterial input function from dynamic contrast enhanced MRI

    Get PDF
    The arterial input function (AIF) plays a crucial role in estimating quantitative perfusion properties from dynamic susceptibility contrast (DSC) MRI. An important issue, however, is that measuring the AIF in absolute contrast-agent concentrations is challenging, due to uncertainty in relation to the measured (Formula presented.) -weighted signal, signal depletion at high concentration, and partial-volume effects. A potential solution could be to derive the AIF from separately acquired dynamic contrast enhanced (DCE) MRI data. We aim to compare the AIF determined from DCE MRI with the AIF from DSC MRI, and estimated perfusion coefficients derived from DSC data using a DCE-driven AIF with perfusion coefficients determined using a DSC-based AIF. AIFs were manually selected in branches of the middle cerebral artery (MCA) in both DCE and DSC data in each patient. In addition, a semi-automatic AIF-selection algorithm was applied to the DSC data. The amplitude and full width at half-maximum of the AIFs were compared statistically using the Wilcoxon rank-sum test, applying a 0.05 significance level. Cerebral blood flow (CBF) was derived with different AIF approaches and compared further. The results showed that the AIFs extracted from DSC scans yielded highly variable peaks across arteries within the same patient. The semi-automatic DSC–AIF had significantly narrower width compared with the manual AIFs, and a significantly larger peak than the manual DSC–AIF. Additionally, the DCE-based AIF provided a more stable measurement of relative CBF and absolute CBF values estimated with DCE–AIFs that were compatible with previously reported values. In conclusion, DCE-based AIFs were reproduced significantly better across vessels, showed more realistic profiles, and delivered more stable and reasonable CBF measurements. The DCE–AIF can, therefore, be considered as an alternative AIF source for quantitative perfusion estimations in DSC MRI.</p

    Magnetotunneling Between Two-dimensional Electron Gases in InAs-AlSb-GaSb Heterostructures

    Get PDF
    We have observed that the tunneling magnetoconductance between two-dimensional (2D) electron gases formed at nominally identical InAs-AlSb interfaces most often exhibits two sets of Shubnikov-de Haas oscillations with almost the same frequency. This result is explained quantitatively with a model of the conductance in which the 2D gases have different densities and can tunnel between Landau levels with different quantum indices. When the epitaxial growth conditions of the interfaces are optimized, the zero-bias magnetoconductance shows a single set of oscillations, thus proving that the asymmetry between the two electron gases can be eliminated.Comment: RevTeX format including 4 figures; submit for publicatio

    Synthesis and Modular Reactivity of Pyrazole 5-Trifluoroborates: Intermediates for the Preparation of Fully-Functionalized Pyrazoles.

    Get PDF
    The regioselective condensation of hydrazines and ynone trifluoroborates provides access to a range of pyrazole 5-trifluoroborates. The stability of the borate unit allows chemoselective halogenation of the heteroaromatic ring, thereby delivering pyrazole scaffolds that allow orthogonal functionalization at C5 and C4. The modular reactivity of these intermediates is exemplified by cross-coupling reactions, enabling regiocontrolled synthesis of fully-functionalized pyrazole derivatives

    Electronic states and optical properties of GaAs/AlAs and GaAs/vacuum superlattices by the linear combination of bulk bands method

    Full text link
    The linear combination of bulk bands method recently introduced by Wang, Franceschetti and Zunger [Phys. Rev. Lett.78, 2819 (1997)] is applied to a calculation of energy bands and optical constants of (GaAs)n_n/(AlAs)n_n and (GaAs)n_n/(vacuum)n_n (001) superlattices with n ranging from 4 to 20. Empirical pseudopotentials are used for the calculation of the bulk energy bands. Quantum-confined induced shifts of critical point energies are calculated and are found to be larger for the GaAs/vacuum system. The E1E_1 peak in the absorption spectra has a blue shift and splits into two peaks for decreasing superlattice period; the E2E_2 transition instead is found to be split for large-period GaAs/AlAs superlattices. The band contribution to linear birefringence of GaAs/AlAs superlattices is calculated and compared with recent experimental results of Sirenko et al. [Phys. Rev. B 60, 8253 (1999)]. The frequency-dependent part reproduces the observed increase with decreasing superlattice period, while the calculated zero-frequency birefringence does not account for the experimental results and points to the importance of local-field effects.Comment: 10 pages, 11 .eps figures, 1 tabl

    Broken-Symmetry States in Quantum Hall Superlattices

    Full text link
    We argue that broken-symmetry states with either spatially diagonal or spatially off-diagonal order are likely in the quantum Hall regime, for clean multiple quantum well (MQW) systems with small layer separations. We find that for MQW systems, unlike bilayers, charge order tends to be favored over spontaneous interlayer coherence. We estimate the size of the interlayer tunneling amplitude needed to stabilize superlattice Bloch minibands by comparing the variational energies of interlayer-coherent superlattice miniband states with those of states with charge order and states with no broken symmetries. We predict that when coherent miniband ground states are stable, strong interlayer electronic correlations will strongly enhance the growth-direction tunneling conductance and promote the possibility of Bloch oscillations.Comment: 9 pages LaTeX, 4 figures EPS, to be published in PR

    Measurement of the relative branching ratio BR(\Xi_c^+ \to p^+ K^-\pi^+)\BR(\Xi_c^+ \to \Xi^- \pi^+ \pi^+)

    Full text link
    We report the observation of the Cabibbo suppressed decay \Xi_c^+ \to p K^-\pi^+ using data collected with the FOCUS spectrometer during the 1996--97 Fermilab fixed target run. We find a \Xi_c^+ signal peak of 202\pm35 events. We have measured the relative branching ratios BR(\Xi^+_c\to p K^-\pi^+)/BR(\Xi^+_c\to\Xi^-\pi^+\pi^+)= 0.234 \pm 0.047 \pm 0.022 and BR(\Xi^+_c\to p \bar{K}^*(892)^0)/BR(\Xi^+_c\to p K^-\pi^+)= 0.54 \pm 0.09 \pm 0.05 .Comment: 9 pages, 4 figure

    The Target Silicon Detector for the FOCUS Spectrometer

    Full text link
    We describe a silicon microstrip detector interleaved with segments of a beryllium oxide target which was used in the FOCUS photoproduction experiment at Fermilab. The detector was designed to improve the vertex resolution and to enhance the reconstruction efficiency of short-lived charm particles.Comment: 18 pages, 14 figure

    Observation of a 1750 MeV/c^2 Enhancement in the Diffractive Photoproduction of K^+K^-

    Get PDF
    Using the FOCUS spectrometer with photon beam energies between 20 and 160 \gev, we confirm the existence of a diffractively photoproduced enhancement in K+K−K^+K^- at 1750 \mevcc with nearly 100 times the statistics of previous experiments. Assuming this enhancement to be a single resonance with a Breit-Wigner mass shape, we determine its mass to be 1753.5±1.5±2.31753.5\pm 1.5\pm 2.3 \mevcc and its width to be 122.2±6.2±8.0122.2\pm 6.2\pm 8.0 \mevcc. We find no corresponding enhancement at 1750 \mevcc in K∗KK^*K, and again neglecting any possible interference effects we place limits on the ratio Γ(X(1750)→K∗K)/Γ(X(1750)→K+K−)\Gamma (X(1750) \to K^*K)/\Gamma (X(1750) \to K^+K^-). Our results are consistent with previous photoproduction experiments, but, because of the much greater statistics, challenge the common interpretation of this enhancement as the ϕ(1680)\phi (1680) seen in e+e−e^+e^- annihilation experiments.Comment: 10 pages, 5 figure
    • …
    corecore