380 research outputs found

    Operative conditions evaluation for efficient building retrofit : a case study

    Get PDF
    The implementation of energy efficiency measures into the existing building stock is essential to meet the 2020 targets set by the EU Energy Performance of Buildings Directive (EPBD) and reinforced with the "EPBD-recast". Thus, energy refurbishment of existing buildings is fundamental to achieve these goals. However, energy issues should not be the only concerns since the indoor environmental quality (IEQ) is also as important. When planning a building retrofit it is then necessary to consider the energy efficiency requirements as well as the IEQ. To do so, the main problems of the existing buildings should be identified. This work presents a study carried out in a large office building to identify the main pathologies related to the energy efficiency and to the IEQ. The main objective of this study was to characterize the actual situation of a building that represents a great number of the Portuguese office buildings in order to identify the principal problems that occurs in this type of buildings, to support the development of a refurbishment project of the building that can optimize both the energy efficiency and the relevant parameters to the IEQ and that are also solutions with potential to be used in other buildings.This work was support by FEDER funds through the Competitiveness Factors Operational Programme – COMPETE and National Funds through FCT – Foundation for Science and Technology under the project FCOMP-01-0124- FEDER-007189

    UPF1, a Conserved Nonsense-Mediated mRNA Decay Factor, Regulates Cyst Wall Protein Transcripts in Giardia lamblia

    Get PDF
    The Giardia lamblia cyst wall is required for survival outside the host and infection. Three cyst wall protein (cwp) genes identified to date are highly up-regulated during encystation. However, little is known of the molecular mechanisms governing their gene regulation. Messenger RNAs containing premature stop codons are rapidly degraded by a nonsense-mediated mRNA decay (NMD) system to avoid production of non-functional proteins. In addition to RNA surveillance, NMD also regulates thousands of naturally occurring transcripts through a variety of mechanisms. It is interesting to know the NMD pathway in the primitive eukaryotes. Previously, we have found that the giardial homologue of a conserved NMD factor, UPF1, may be functionally conserved and involved in NMD and in preventing nonsense suppression. In this study, we tested the hypothesis that NMD factors can regulate some naturally occurring transcripts in G. lamblia. We found that overexpression of UPF1 resulted in a significant decrease of the levels of CWP1 and cyst formation and of the endogenous cwp1-3, and myb2 mRNA levels and stability. This indicates that NMD could contribute to the regulation of the cwp1-3 and myb2 transcripts, which are key to G. lamblia differentiation into cyst. Interestingly, we also found that UPF1 may be involved in regulation of eight other endogenous genes, including up-regulation of the translation elongation factor gene, whose product increases translation which is required for NMD. Our results indicate that NMD factor could contribute to the regulation of not only nonsense containing mRNAs, but also mRNAs of the key encystation-induced genes and other endogenous genes in the early-diverging eukaryote, G. lamblia

    Genetic and Pharmacological Inhibition of MicroRNA-92a Maintains Podocyte Cell Cycle Quiescence and Limits Crescentic Glomerulonephritis

    Get PDF
    Crescentic rapidly progressive glomerulonephritis (RPGN) represents the most aggressive form of acquired glomerular disease. While most therapeutic approaches involve potentially toxic immunosuppressive strategies, the pathophysiology remains incompletely understood. Podocytes are glomerular epithelial cells that are normally growth-arrested because of the expression of cyclin-dependent kinase (CDK) inhibitors. An exception is in RPGN where podocytes undergo a deregulation of their differentiated phenotype and proliferate. Here we demonstrate that microRNA-92a (miR-92a) is enriched in podocytes of patients and mice with RPGN. The CDK inhibitor p57Kip2 is a major target of miR-92a that constitutively safeguards podocyte cell cycle quiescence. Podocyte-specific deletion of miR-92a in mice de-repressed the expression of p57Kip2 and prevented glomerular injury in RPGN. Administration of an anti-miR-92a after disease initiation prevented albuminuria and kidney failure, indicating miR-92a inhibition as a potential therapeutic strategy for RPGN. We demonstrate that miRNA induction in epithelial cells can break glomerular tolerance to immune injury

    Common Household Chemicals and the Allergy Risks in Pre-School Age Children

    Get PDF
    The risk of indoor exposure to volatile organic compounds (VOCs) on allergic airway diseases in children remains unknown.We examined the residential concentrations of VOCs, emitted from building materials, paints, furniture, and other lifestyle practices and the risks of multiple allergic diseases as well as the IgE-sensitization in pre-school age children in Sweden.In a case-control investigation (198 case children with asthma and allergy and 202 healthy controls), air samples were collected in the room where the child slept. The air samples were analyzed for the levels of eight classes of VOCs.A natural-log unit of summed propylene glycol and glycol ethers (PGEs) in bedroom air (equal to interquartile range, or 3.43 - 15.65 µg/m(3)) was associated with 1.5-fold greater likelihood of being a case (95% CI, 1.1 - 2.1), 1.5-fold greater likelihood of asthma (95% CI, 1.0 - 2.3), 2.8-fold greater likelihood of rhinitis (95% CI, 1.6 - 4.7), and 1.6-fold greater likelihood of eczema (95% CI, 1.1 - 2.3), accounting for gender, secondhand smoke, allergies in both parents, wet cleaning with chemical agents, construction period of the building, limonene, cat and dog allergens, butyl benzyl phthalate (BBzP), and di(2-ethylhexyl)phthalate (DEHP). When the analysis was restricted to the cases, the same unit concentration was associated with 1.8-fold greater likelihood of IgE-sensitization (95% CI, 1.1 - 2.8) compared to the non-IgE sensitized cases. No similar associations were found for the other classes of VOCs.We propose a novel hypothesis that PGEs in indoor air exacerbate and/or induce the multiple allergic symptoms, asthma, rhinitis and eczema, as well as IgE sensitization respectively

    PKC Theta Ablation Improves Healing in a Mouse Model of Muscular Dystrophy

    Get PDF
    Inflammation is a key pathological characteristic of dystrophic muscle lesion formation, limiting muscle regeneration and resulting in fibrotic and fatty tissue replacement of muscle, which exacerbates the wasting process in dystrophic muscles. Limiting immune response is thus one of the therapeutic options to improve healing, as well as to improve the efficacy of gene- or cell-mediated strategies to restore dystrophin expression. Protein kinase C θ (PKCθ) is a member of the PKCs family highly expressed in both immune cells and skeletal muscle; given its crucial role in adaptive, but also innate, immunity, it is being proposed as a valuable pharmacological target for immune disorders. In our study we asked whether targeting PKCθ could represent a valuable approach to efficiently prevent inflammatory response and disease progression in a mouse model of muscular dystrophy. We generated the bi-genetic mouse model mdx/θ−/−, where PKCθ expression is lacking in mdx mice, the mouse model of Duchenne muscular dystrophy. We found that muscle wasting in mdx/θ−/− mice was greatly prevented, while muscle regeneration, maintenance and performance was significantly improved, as compared to mdx mice. This phenotype was associated to reduction in inflammatory infiltrate, pro-inflammatory gene expression and pro-fibrotic markers activity, as compared to mdx mice. Moreover, BM transplantation experiments demonstrated that the phenotype observed was primarily dependent on lack of PKCθ expression in hematopoietic cells

    Massive multiplication of genome and ribosomes in dormant cells (akinetes) of Aphanizomenon ovalisporum (Cyanobacteria)

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Nature Publishing Group for personal use, not for redistribution. The definitive version was published in The ISME Journal 6 (2012): 670–679, doi:10.1038/ismej.2011.128.Akinetes are dormancy cells commonly found among filamentous cyanobacteria, many of which are toxic and/or nuisance, bloom-forming species. Development of akinetes from vegetative cells is a process that involves morphological and biochemical modifications. Here we applied a single cell approach to quantify genome and ribosome content of akinetes and vegetative cells in Aphanizomenon ovalisporum (Cyanobacteria). Vegetative cells of A. ovalisporum were naturally polyploid and contained on average 8 genome copies per cell. However, the chromosomal content of akinetes increased up to 450 copies, with an average value of 119 genome copies per akinete, 15 fold higher that in vegetative cells. Based on fluorescence in situ hybridization with a probe targeting 16S rRNA and detection with confocal laser scanning microscopy we conclude that ribosomes accumulated in akinetes to a higher level than that found in vegetative cells. We further present evidence that this massive accumulation of nucleic acids in akinetes is likely supported by phosphate supplied from inorganic polyphosphate bodies that were abundantly present in vegetative cells, but notably absent from akinetes. These results are interpreted in the context of cellular investments for proliferation following long term dormancy, as the high nucleic acid content would provide the basis for extended survival, rapid resumption of metabolic activity and cell division upon germination.Supported by the Gruss Lipper Foundation research award (AS). This study was part of the Joint German-Israeli-Project (FKZ 02WT0985, WR803) funded by the German Ministry of Research and Technology (BMBF) and Israel Ministry of Science and Technology (MOST)

    Risk factors for non-atopic asthma/wheeze in children and adolescents: a systematic review.

    Get PDF
    BACKGROUND: The study of non-atopic asthma/wheeze in children separately from atopic asthma is relatively recent. Studies have focused on single risk factors and had inconsistent findings. OBJECTIVE: To review evidence on factors associated with non-atopic asthma/wheeze in children and adolescents. METHODS: A review of studies of risk factors for non-atopic asthma/wheeze which had a non-asthmatic comparison group, and assessed atopy by skin-prick test or allergen-specific IgE. RESULTS: Studies of non-atopic asthma/wheeze used a wide diversity of definitions of asthma/wheeze, comparison groups and methods to assess atopy. Among 30 risk factors evaluated in the 43 studies only 3 (family history of asthma/rhinitis/eczema, dampness/mold in the household, and lower respiratory tract infections in childhood) showed consistent associations with non-atopic asthma/wheeze. No or limited period of breastfeeding was less consistently associated with non-atopic asthma/wheeze. The few studies examining the effects of overweight/obesity and psychological/social factors showed consistent associations. We used a novel graphical presentation of different risk factors for non-atopic asthma/wheeze, allowing a more complete perception of the complex pattern of effects. CONCLUSIONS: More research using standardized methodology is needed on the causes of non-atopic asthma

    Worsening of Cardiomyopathy Using Deflazacort in an Animal Model Rescued by Gene Therapy

    Get PDF
    We have previously demonstrated that gene therapy can rescue the phenotype and extend lifespan in the delta-sarcoglycan deficient cardiomyopathic hamster. In patients with similar genetic defects, steroids have been largely used to slow down disease progression. Aim of our study was to evaluate the combined effects of steroid treatment and gene therapy on cardiac function. We injected the human delta-sarcoglycan cDNA by adeno-associated virus (AAV) 2/8 by a single intraperitoneal injection into BIO14.6 Syrian hamsters at ten days of age to rescue the phenotype. We then treated the hamsters with deflazacort. Treatment was administered to half of the hamsters that had received the AAV and the other hamsters without AAV, as well as to normal hamsters. Both horizontal and vertical activities were greatly enhanced by deflazacort in all groups. As in previous experiments, the AAV treatment alone was able to preserve the ejection fraction (70±7% EF). However, the EF value declined (52±14%) with a combination of AAV and deflazacort. This was similar with all the other groups of affected animals. We confirm that gene therapy improves cardiac function in the BIO14.6 hamsters. Our results suggest that deflazacort is ineffective and may also have a negative impact on the cardiomyopathy rescue, possibly by boosting motor activity. This is unexpected and may have significance in terms of the lifestyle recommendations for patients

    Nonsense-mediated mRNA decay controls the changes in yeast ribosomal protein pre-mRNAs levels upon osmotic stress

    Get PDF
    The expression of ribosomal protein (RP) genes requires a substantial part of cellular transcription, processing and translation resources. Thus, the RP expression must be tightly regulated in response to conditions that compromise cell survival. In Saccharomyces cerevisiae cells, regulation of the RP gene expression at the transcriptional, mature mRNA stability and translational levels during the response to osmotic stress has been reported. Reprogramming global protein synthesis upon osmotic shock includes the movement of ribosomes from RP transcripts to stress-induced mRNAs. Using tiling arrays, we show that osmotic stress yields a drop in the levels of RP pre-mRNAs in S. cerevisiae cells. An analysis of the tiling array data, together with transcription rates data, shows a poor correlation, indicating that the drop in the RP pre-mRNA levels is not merely a result of the lowered RP transcription rates. A kinetic study using quantitative RT-PCR confirmed the decrease in the levels of several RP-unspliced transcripts during the first 15 minutes of osmotic stress, which seems independent of MAP kinase Hog1. Moreover, we found that the mutations in the components of the nonsense-mediated mRNA decay (NMD), Upf1, Upf2, Upf3 or in exonuclease Xrn1, eliminate the osmotic stress-induced drop in RP pre-mRNAs. Altogether, our results indicate that the degradation of yeast RP unspliced transcripts by NMD increases during osmotic stress, and suggest that this might be another mechanism to control RP synthesis during the stress response
    corecore