84 research outputs found

    Water induced sediment levitation enhances downslope transport on Mars

    Get PDF
    On Mars, locally warm surface temperatures (~293 K) occur, leading to the possibility of (transient) liquid water on the surface. However, water exposed to the martian atmosphere will boil, and the sediment transport capacity of such unstable water is not well understood. Here, we present laboratory studies of a newly recognized transport mechanism: “levitation” of saturated sediment bodies on a cushion of vapor released by boiling. Sediment transport where this mechanism is active is about nine times greater than without this effect, reducing the amount of water required to transport comparable sediment volumes by nearly an order of magnitude. Our calculations show that the effect of levitation could persist up to ~48 times longer under reduced martian gravity. Sediment levitation must therefore be considered when evaluating the formation of recent and present-day martian mass wasting features, as much less water may be required to form such features than previously thought

    Paradoxes in carcinogenesis: New opportunities for research directions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The prevailing paradigm in cancer research is the somatic mutation theory that posits that cancer begins with a single mutation in a somatic cell followed by successive mutations. Much cancer research involves refining the somatic mutation theory with an ever increasing catalog of genetic changes. The problem is that such research may miss paradoxical aspects of carcinogenesis for which there is no likely explanation under the somatic mutation theory. These paradoxical aspects offer opportunities for new research directions that should not be ignored.</p> <p>Discussion</p> <p>Various paradoxes related to the somatic mutation theory of carcinogenesis are discussed: (1) the presence of large numbers of spatially distinct precancerous lesions at the onset of promotion, (2) the large number of genetic instabilities found in hyperplastic polyps not considered cancer, (3) spontaneous regression, (4) higher incidence of cancer in patients with xeroderma pigmentosa but not in patients with other comparable defects in DNA repair, (5) lower incidence of many cancers except leukemia and testicular cancer in patients with Down's syndrome, (6) cancer developing after normal tissue is transplanted to other parts of the body or next to stroma previously exposed to carcinogens, (7) the lack of tumors when epithelial cells exposed to a carcinogen were transplanted next to normal stroma, (8) the development of cancers when Millipore filters of various pore sizes were was inserted under the skin of rats, but only if the holes were sufficiently small. For the latter paradox, a microarray experiment is proposed to try to better understand the phenomena.</p> <p>Summary</p> <p>The famous physicist Niels Bohr said "How wonderful that we have met with a paradox. Now we have some hope of making progress." The same viewpoint should apply to cancer research. It is easy to ignore this piece of wisdom about the means to advance knowledge, but we do so at our peril.</p

    A study on trypsin, Aspergillus flavus and Bacillus sp. protease inhibitory activity in Cassia tora (L.) syn Senna tora (L.) Roxb. seed extract

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Proteases play an important role in virulence of many human, plant and insect pathogens. The proteinaceous protease inhibitors of plant origin have been reported widely from many plant species. The inhibitors may potentially be used for multiple therapeutic applications in viral, bacterial, fungal diseases and physiological disorders. In traditional Indian medicine system, <it>Cassia tora </it>(<it>Senna tora</it>) is reportedly effective in treatment of skin and gastrointestinal disorders. The present study explores the protease inhibitory activity of the above plant seeds against trypsin, <it>Aspergillus flavus </it>and <it>Bacillus </it>sp. proteases.</p> <p>Methods</p> <p>The crushed seeds of <it>Cassia tora </it>were washed thoroughly with acetone and hexane for depigmentation and defatting. The proteins were fractionated by ammonium sulphate (0-30, 30-60, 60-90%) followed by dialysis and size exclusion chromatography (SEC). The inhibitory potential of crude seed extract and most active dialyzed fraction against trypsin and proteases was established by spot test using unprocessed x-ray film and casein digestion methods, respectively. Electrophoretic analysis of most active fraction (30-60%) and SEC elutes were carried employing Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and Gelatin SDS-PAGE. Inhibition of fungal spore germination was studied in the presence of dialyzed active inhibitor fraction. Standard deviation (SD) and ANOVA were employed as statistical tools.</p> <p>Results</p> <p>The crude seeds' extract displayed strong antitryptic, bacterial and fungal protease inhibitory activity on x-ray film. The seed protein fraction 30-60% was found most active for trypsin inhibition in caseinolytic assay (P < 0.001). The inhibition of caseinolytic activity of the proteases increased with increasing ratio of seed extract. The residual activity of trypsin, <it>Aspergillus flavus </it>and <it>Bacillus </it>sp. proteases remained only 4, 7 and 3.1%, respectively when proteases were incubated with 3 mg ml<sup>-1 </sup>seed protein extract for 60 min. The inhibitory activity was evident in gelatin SDS-PAGE where a major band (~17-19 kD) of protease inhibitor (PI) was detected in dialyzed and SEC elute. The conidial germination of <it>Aspergillus flavus </it>was moderately inhibited (30%) by the dialyzed seed extract.</p> <p>Conclusions</p> <p><it>Cassia tora </it>seed extract has strong protease inhibitory activity against trypsin, <it>Aspergillus flavus </it>and <it>Bacillus </it>sp. proteases. The inhibitor in <it>Cassia tora </it>may attenuate microbial proteases and also might be used as phytoprotecting agent.</p

    Allopregnanolone Promotes Regeneration and Reduces β-Amyloid Burden in a Preclinical Model of Alzheimer's Disease

    Get PDF
    Previously, we demonstrated that allopregnanolone (APα) promoted proliferation of rodent and human neural progenitor cells in vitro. Further, we demonstrated that APα promoted neurogenesis in the hippocampal subgranular zone (SGZ) and reversed learning and memory deficits in the male triple transgenic mouse model of Alzheimer's (3xTgAD). In the current study, we determined the efficacy of APα to promote the survival of newly generated neural cells while simultaneously reducing Alzheimer's disease (AD) pathology in the 3xTgAD male mouse model. Comparative analyses between three different APα treatment regimens indicated that APα administered 1/week for 6 months was maximally efficacious for simultaneous promotion of neurogenesis and survival of newly generated cells and reduction of AD pathology. We further investigated the efficacy of APα to impact Aβ burden. Treatment was initiated either prior to or post intraneuronal Aβ accumulation. Results indicated that APα administered 1/week for 6 months significantly increased survival of newly generated neurons and simultaneously reduced Aβ pathology with greatest efficacy in the pre-pathology treatment group. APα significantly reduced Aβ generation in hippocampus, cortex, and amygdala, which was paralleled by decreased expression of Aβ-binding-alcohol-dehydrogenase. In addition, APα significantly reduced microglia activation as indicated by reduced expression of OX42 while increasing CNPase, an oligodendrocyte myelin marker. Mechanistic analyses indicated that pre-pathology treatment with APα increased expression of liver-X-receptor, pregnane-X-receptor, and 3-hydroxy-3-methyl-glutaryl-CoA-reductase (HMG-CoA-R), three proteins that regulate cholesterol homeostasis and clearance from brain. Together these findings provide preclinical evidence for the optimal treatment regimen of APα to achieve efficacy as a disease modifying therapeutic to promote regeneration while simultaneously decreasing the pathology associated with Alzheimer's disease

    Expression of NRG1 and its receptors in human bladder cancer

    Get PDF
    BACKGROUND: Therapies targeting ERBB2 have shown success in the clinic. However, response is not determined solely by expression of ERBB2. Levels of ERBB3, its preferred heterodimerisation partner and ERBB ligands may also have a role. METHODS: We measured NRG1 expression by real-time quantitative RT–PCR and ERBB receptors by western blotting and immunohistochemistry in bladder tumours and cell lines. RESULTS: NRG1a and NRG1b showed significant coordinate expression. NRG1b was upregulated in 78 % of cell lines. In tumours, there was a greater range of expression with a trend towards increased NRG1a with higher stage and grade. Increased expression o

    The phosphatase and tensin homologue deleted on chromosome 10 mediates radiosensitivity in head and neck cancer

    Get PDF
    BACKGROUND: For locally advanced squamous cell carcinoma of the head and neck (HNSCC), the recurrence rate after surgery and postoperative radiotherapy is between 20 and 40%, and the 5- year overall survival rate is similar to 50%. Presently, no markers exist to accurately predict treatment outcome. Expression of proteins in the human epidermal growth factor receptor (EGFR) pathway has been reported as a prognostic marker in several types of cancer. METHODS: The aim of this study was to investigate the prognostic value of proteins in the EGFR pathway in HNSCC. For this purpose, we collected surgically resected tissue of 140 locally advanced head and neck cancer patients, all treated with surgery and postoperative radiotherapy. RESULTS: In a multivariate analysis, expression of the phosphatase and tensin homologue deleted on chromosome 10 (PTEN) was significantly related to worse locoregional control (LRC; HR: 2.2, 95% CI: 1.1-4.6; P = 0.03), independent of lymph node metastases (HR: 5.6, 95% CI: 1.2-27.4; P = 0.03) and extranodal spread (HR: 2.7; 95% CI: 1.2- 6.5; P = 0.02). In vitro clonogenic radiosensitivity assays confirmed that overexpression of PTEN resulted in increased radioresistance. CONCLUSION: Our study is the first report showing that expression of PTEN mediates radiosensitivity in vitro and that increased expression in advanced HNSCC predicts worse LRC. British Journal of Cancer (2010) 102, 1778-1785. doi: 10.1038/sj.bjc.6605707 www.bjcancer.com Published online 25 May 2010 (C) 2010 Cancer Research U

    DNA Repair in Human Pluripotent Stem Cells Is Distinct from That in Non-Pluripotent Human Cells

    Get PDF
    The potential for human disease treatment using human pluripotent stem cells, including embryonic stem cells and induced pluripotent stem cells (iPSCs), also carries the risk of added genomic instability. Genomic instability is most often linked to DNA repair deficiencies, which indicates that screening/characterization of possible repair deficiencies in pluripotent human stem cells should be a necessary step prior to their clinical and research use. In this study, a comparison of DNA repair pathways in pluripotent cells, as compared to those in non-pluripotent cells, demonstrated that DNA repair capacities of pluripotent cell lines were more heterogeneous than those of differentiated lines examined and were generally greater. Although pluripotent cells had high DNA repair capacities for nucleotide excision repair, we show that ultraviolet radiation at low fluxes induced an apoptotic response in these cells, while differentiated cells lacked response to this stimulus, and note that pluripotent cells had a similar apoptotic response to alkylating agent damage. This sensitivity of pluripotent cells to damage is notable since viable pluripotent cells exhibit less ultraviolet light-induced DNA damage than do differentiated cells that receive the same flux. In addition, the importance of screening pluripotent cells for DNA repair defects was highlighted by an iPSC line that demonstrated a normal spectral karyotype, but showed both microsatellite instability and reduced DNA repair capacities in three out of four DNA repair pathways examined. Together, these results demonstrate a need to evaluate DNA repair capacities in pluripotent cell lines, in order to characterize their genomic stability, prior to their pre-clinical and clinical use

    Language development after cochlear implantation: an epigenetic model

    Get PDF
    Growing evidence supports the notion that dynamic gene expression, subject to epigenetic control, organizes multiple influences to enable a child to learn to listen and to talk. Here, we review neurobiological and genetic influences on spoken language development in the context of results of a longitudinal trial of cochlear implantation of young children with severe to profound sensorineural hearing loss in the Childhood Development after Cochlear Implantation study. We specifically examine the results of cochlear implantation in participants who were congenitally deaf (N = 116). Prior to intervention, these participants were subject to naturally imposed constraints in sensory (acoustic–phonologic) inputs during critical phases of development when spoken language skills are typically achieved rapidly. Their candidacy for a cochlear implant was prompted by delays (n = 20) or an essential absence of spoken language acquisition (n = 96). Observations thus present an opportunity to evaluate the impact of factors that influence the emergence of spoken language, particularly in the context of hearing restoration in sensitive periods for language acquisition. Outcomes demonstrate considerable variation in spoken language learning, although significant advantages exist for the congenitally deaf children implanted prior to 18 months of age. While age at implantation carries high predictive value in forecasting performance on measures of spoken language, several factors show significant association, particularly those related to parent–child interactions. Importantly, the significance of environmental variables in their predictive value for language development varies with age at implantation. These observations are considered in the context of an epigenetic model in which dynamic genomic expression can modulate aspects of auditory learning, offering insights into factors that can influence a child’s acquisition of spoken language after cochlear implantation. Increased understanding of these interactions could lead to targeted interventions that interact with the epigenome to influence language outcomes with intervention, particularly in periods in which development is subject to time-sensitive experience

    On the dynamics of the adenylate energy system: homeorhesis vs homeostasis.

    Get PDF
    Biochemical energy is the fundamental element that maintains both the adequate turnover of the biomolecular structures and the functional metabolic viability of unicellular organisms. The levels of ATP, ADP and AMP reflect roughly the energetic status of the cell, and a precise ratio relating them was proposed by Atkinson as the adenylate energy charge (AEC). Under growth-phase conditions, cells maintain the AEC within narrow physiological values, despite extremely large fluctuations in the adenine nucleotides concentration. Intensive experimental studies have shown that these AEC values are preserved in a wide variety of organisms, both eukaryotes and prokaryotes. Here, to understand some of the functional elements involved in the cellular energy status, we present a computational model conformed by some key essential parts of the adenylate energy system. Specifically, we have considered (I) the main synthesis process of ATP from ADP, (II) the main catalyzed phosphotransfer reaction for interconversion of ATP, ADP and AMP, (III) the enzymatic hydrolysis of ATP yielding ADP, and (IV) the enzymatic hydrolysis of ATP providing AMP. This leads to a dynamic metabolic model (with the form of a delayed differential system) in which the enzymatic rate equations and all the physiological kinetic parameters have been explicitly considered and experimentally tested in vitro. Our central hypothesis is that cells are characterized by changing energy dynamics (homeorhesis). The results show that the AEC presents stable transitions between steady states and periodic oscillations and, in agreement with experimental data these oscillations range within the narrow AEC window. Furthermore, the model shows sustained oscillations in the Gibbs free energy and in the total nucleotide pool. The present study provides a step forward towards the understanding of the fundamental principles and quantitative laws governing the adenylate energy system, which is a fundamental element for unveiling the dynamics of cellular life
    corecore