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Abstract

Background: DNA methylation regulates gene expression, through the inhibition/activation of gene transcription
of methylated/unmethylated genes. Hence, DNA methylation profiling can capture pivotal features of gene
expression in cancer tissues from patients at the time of diagnosis. In this work, we analyzed a breast cancer case
series, to identify DNA methylation determinants of metastatic versus non-metastatic tumors.

Methods: CpG-island methylation was evaluated on a 56-gene cancer-specific biomarker microarray in metastatic versus
non-metastatic breast cancers in a multi-institutional case series of 123 breast cancer patients. Global statistical modeling
and unsupervised hierarchical clustering were applied to identify a multi-gene binary classifier with high sensitivity and
specificity. Network analysis was utilized to quantify the connectivity of the identified genes.

Results: Seven genes (BRCA1, DAPK1, MSH2, CDKN2A, PGR, PRKCDBP, RANKL) were found informative for prognosis of
metastatic diffusion and were used to calculate classifier accuracy versus the entire data-set. Individual-gene performances
showed sensitivities of 63–79 %, 53–84 % specificities, positive predictive values of 59–83 % and negative predictive values
of 63–80 %. When modelled together, these seven genes reached a sensitivity of 93 %, 100 % specificity, a positive
predictive value of 100 % and a negative predictive value of 93 %, with high statistical power. Unsupervised hierarchical
clustering independently confirmed these findings, in close agreement with the accuracy measurements. Network
analyses indicated tight interrelationship between the identified genes, suggesting this to be a functionally-coordinated
module, linked to breast cancer progression.

Conclusions: Our findings identify CpG-island methylation profiles with deep impact on clinical outcome, paving the way
for use as novel prognostic assays in clinical settings.
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Background
Breast cancer predictive and prognostic procedures have
a significant impact on current medical care. However,
traditional prognostic parameters (lymph node diffusion,
tumor size, grading, estrogen receptor expression) can-
not adequately predict tumor relapse. As an example,
10–20 % of the patients with the best prognosis, i.e. with
small size tumors, expressing estrogen receptors and
without lymph node invasion, still experience relapse
within 5 years [1, 2]. At the time of diagnosis, progressing
cases cannot be distinguished from those that do not
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relapse by any conventional prognostic parameter. There-
fore, effective markers, with better performance than trad-
itional prognostic indicators, are urgently needed.
By merging biological insight and cluster analysis for

experimental immunoistochemistry (IHC) parameters, we
have previously succeeded in subgrouping breast can-
cers with distinct outcomes [3-5], and response to ther-
apy [4, 6], indicating the clinical usefulness of such
procedures. DNA methylation regulates gene expression,
through the inhibition/activation of gene transcription of
methylated/unmethylated genes, respectively [7, 8]. This
largely occurs through methylation of CpG islands, most
frequently in the promoter region of the genes [7, 9-11].
Broad hypomethylation with focal hypermethylation are
frequently found in cancer [8, 12], thus affecting the
distributed under the terms of the Creative Commons Attribution License
which permits unrestricted use, distribution, and reproduction in any medium,
. The Creative Commons Public Domain Dedication waiver (http://
) applies to the data made available in this article, unless otherwise stated.

https://core.ac.uk/display/208568553?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1186/s12885-015-1412-9&domain=pdf
mailto:s.alberti@unich.it
mailto:Youping_Deng@rush.edu
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/


Li et al. BMC Cancer  (2015) 15:417 Page 2 of 12
expression of tumor suppressor genes, e.g. TP53, DCC,
SOCS2, DLEU7 [13-16], and favoring the mutation of on-
cogenes [17]. In turn, tumor suppressors have been shown
to modulate DNA methylation levels, genome stability
and DNA methylation-dependent gene amplification [18,
19], suggesting key interplays between alterations of DNA
methylation and tumor progression. Indeed, DNA
methylation-mediated loss of expression has been shown
to cause functional ablation of hemizygous alleles at loss
of heterozygosity (LOH) loci, encoding transcription fac-
tors (TF), e.g. MOS, TTF-1 [20, 21], or proteins associated
with DNA repair [22, 23], proteolytic processing [24],
morphogenesis [25], control of cell cycle, signal transduc-
tion or apoptosis [26]. In breast cancer, CpG-island
methylation was shown to inhibit PTCH1 [27], EFEMP1
[28] and ESR1 [29] expression.
DNA methylation patterns can be assessed in

formalin-fixed paraffin-embedded tissues (FFPE) tumor
samples [30], allowing to profile gene expression
regulatory mechanisms in tumors at the time of sur-
gery, through methylation-sensitive restriction enzyme-
analysis over a 56-gene cancer-specific biomarker
microarray (MethDet-56) [31]. Long-term follow-up
then permits to dissect correlations between DNA
methylation profiles and biological outcome [32-35]. In
this work we identified CpG-island methylation profiles
of cancer biomarker regulatory regions, with a deep im-
pact on prognostic determination in breast cancer, and
the ability to distinguish cases with limited or nil risk
for progression from those at high risk.

Methods
Breast cancer case series
A multi-institutional case series of breast cancer patients
was collected from the University of Udine, the Venice
and Rovigo hospitals, and Rush University (Additional
file 1: Table S1). 123 breast cancer patients were ana-
lyzed; 19 cases showed metastases or metastatic relapse
within 5 years from surgery (15.4 %) (Additional file 1:
Table S1). Metastatic/relapsing cases were compared
with patients that did not progress. Clinical and patho-
logical data were obtained [36, 37] (Additional file 1:
Table S1). Carcinoma grading was performed as de-
scribed [38]. This project was approved by the Italian
Ministry of Health (RicOncol RF-EMR-2006–361866),
and by the Institutional Review Board of Rush University
Medical Center. No written consent was needed for this
study.

DNA isolation
Different procedures were compared for efficiency of
DNA isolation from FFPE breast cancer samples from
mastectomy or excision biopsy [31, 39, 40]. Samples
were then processed for DNA extraction as described
[31, 40]. Briefly, xylene deparaffination was followed by
deproteinization with proteinase K in SDS-containing
buffer at 56 °C. DNA was purified using DNAeasy Tis-
sue kits (Qiagen). DNA was quantified using Hoechst
33258 or ethidium bromide fluorescence [41]. Agarose
gel electrophoresis profiled DNA size distributions for
sample quality assessment (Fig. 1).

Microarray-mediated methylation assay
Bisulfite-based modification permits analysis of all cyto-
sines in a sample; however, it leads to excessive fragmen-
tation of DNA [42]. Affinity-based techniques require a
substantial amount of starting sample, and their effi-
ciency depends on the density of methylation marks
within each specific fragment [43]. Restriction enzyme-
dependent methods are more flexible for analysis of
small samples, and are focused on assessing methylation
of selected restriction sites [8, 31]. As DNA from human
cancer samples is a limiting factor, we utilized previously
developed procedures of methylation-sensitive restric-
tion enzyme-cleavage [31].
For each patient, DNA methylation was tested over a

56-gene cancer-specific biomarker microarray as previ-
ously described [44] (a flowchart is provided in Fig. 2a).
Briefly, each DNA sample was split into two aliquots;
one of these was digested with Hin6I, while the second
one was mock-digested. Both samples were amplified by
nested PCR, and 5-aminoallyl dUTP (Biotium Inc.) was
added to the second amplification run. Products of the
Hin6I-digested DNA were then labeled with Cy3, while
products of the mock-digested DNA were labeled with
Cy5. Labeled DNAs were mixed and competitively
hybridized to DNA microarrays. Slides were scanned
using a GenePix 4000B Microarray Scanner (Molecular
Devices). Intensity of fluorescence was determined using
the GenePix Pro 6.1.0.2 software. Raw GenePix data
were imported as the ratio of signal intensity of Control
hybridization and Test hybridization for each spot, and
processed using Agilent Genespring 12.5, with lowess
normalization and base 2 log transformation. Microarray
data are available in the ArrayExpress database [45]
under accession number E-MTAB-3153.

Data processing
Each microarray contained three identical subarrays of
64 (8 × 8) spots [31] (Fig. 2b). Gene CpG-island probes
corresponded to 56 spots; three spots contained positive
control DNAs and 2 spots contained hybridization con-
trol DNAs, to quantify specific versus nonspecific bind-
ing; three empty areas were used to quantify background
intensity. A multi-step filtering was applied as follows:
spots were removed from analysis if signals were <2
times the average of the control spots, as calculated for
each slide over the three subarrays. Next, data that had
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Fig. 1 Breast cancer genomic DNA from the breast cancer case series. DNA was extracted from FFPE tissue samples as described and assessed by
agarose gel/ethidium bromide electrophoresis. Numbers above each lane indicate individual patient’ cancer samples. mw: molecular weight
markers in kilobases (left side of the panels)
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less than two informative spots across the three subar-
rays were removed. Genes with missing data in more
than 25 % of the samples were removed from the ana-
lysis. For continuous-variable approaches, the mean of
the ratios was calculated for each gene of every sample.
The methylation ratio (Cy5/Cy3) was then calculated,
and the methylation status of each CpG island was cate-
gorized as either methylated or unmethylated.

Statistical analysis
The initial lowess-normalized, log-transformed ratio data
were grouped according to breast cancer progression
status. Log-transformed data distributions were shown to
follow a normal distribution. Hence, the means of values
from the tumors that progressed were compared to the
corresponding measurement from non-progressing tu-
mors by independent sample student’s t-test of fold
changes (FC). Cutoffs of absolute FC ≥2, p < 0.05 were
used to filter-out genes that were not highly differentially
methylated. The remaining genes were submitted to
feature selection models utilizing JMP Genomics algo-
rithms, with 5-fold, ten-runs cross-validation. The
models utilized were discriminant analysis, general
linear model selection, k-nearest neighbors, logistic re-
gression, partial least squares (PLS) and partition trees.
Based on the highest average area (AUC) under the
receiver-operating-characteristic curve (ROC) value
across ten runs, a model was chosen as the optimal
binary classifier. That model was then used to select
the genes with greatest effect on the classifier results.
To confirm these results, individual-gene PLS analysis
was performed using R’s pls package, and statistical
power computations, as previously described [46, 47].
Hierarchical clustering using euclidean distance and
centroid linkage were performed with Genespring.
Statistical power was computed for each individual
gene and for the averaged 7-gene panel using PASS
12.0 with a t-test model and no assumption of equal
variance [46, 47]. A significance level (alpha) of ≥0.05 and
a threshold of ≥80 % statistical power were adopted as
analytical thresholds.
Network analysis
Signaling hubs and connectivity networks were obtained
using Ingenuity Pathway analysis [48] and STRING 9.1
[49] software. To increase specificity, the IPA analysis
was confined to molecules and/or relationships observed
in breast tissues and cell lines. STRING parameters in-
cluded: Active Prediction Methods: Experiments ~ Data-
bases ~ Textmining; required high-confidence (0.700);
no more than ten interactors.
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Results
CpG-island methylation analysis
DNA extraction was performed on FFPE breast cancer
samples from 123 patients from a multi-institutional
case serie with a minimum follow-up of 5 years.
(Additional file 1: Table S1). Ethidium bromide gel elec-
trophoresis (Fig. 1) and amplification of RAS and TP53
exons (manuscript in preparation) benchmarked DNAs
as viable for additional DNA methylation analysis. Re-
lapsing cases were extracted from the registry and
matched with non relapsing patients on the basis of
clinico-pathological data (tumor diameter, pathological
stage, tumor histotype, age, hormone receptors and
grading). DNA methylation of transcription-regulatory
regions in the selected case-control group was analyzed
through methylation-sensitive restriction enzyme-
cleavage, followed by PCR amplification and competitive
hybridization of fluorescence-labelled PCR products on
custom DNA microarrays containing CpG-island gene-
probes for 56 cancer specific biomarkers, as described
[31]. Samples were analyzed through triplicate spot arrays
(eight by eight), each one containing three positive
hybridization controls, two negative controls (A. thaliana
and HLTF) and thre empty spots, to measure background
fluorescence (Fig. 2). Hybridization raw data are available
as indicated in Methods [45]. Microarray fluorescence
measurements were acquired as test (Hin6I-digested DNA
labeled with Cy3) versus control hybridization intensity
(mock-digested DNA labeled with Cy5). Background
fluorescence was subtracted, and Cy3/Cy5 intensity ratios
were obtained for each spot. Intensity ratios were lowess
normalized against global signal intensity of the array, and
transformed as base 2 logs. For continuous-variable ap-
proaches, means of ratios were obtained for each gene
analyzed. Spot signals were filtered according to absolute
signal intensity (threshold of ≥2 times versus control
spots), viable spots numbers (≥2) and missing data (spot
series with missing data in ≥25 % of the samples were
discarded).

Gene CpG-island methylation ranking
Filtered methylation ratios (Cy5/Cy3) were utilized to de-
fine the methylation status of each CpG island. These were
categorized as either methylated or unmethylated, using
cutoffs of absolute FC ≥2, p <0.05. Normalized fluorescence
ratios/differential methylation categorization were then
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assigned to the relapsing or non-relapsing patients groups.
A first comparison between the means of the values from
each group extracted 21 genes, that met the cutoff for sig-
nificant differential methylation (Table 1). PLS K nearest-
neighbors with a radial basis machine was applied to obtain
a first ranking of significantly differentially-methylated
genes (Additional file 2: Table S2). This identified DAPK1,
MDGI, BRCA1, P15, PGK1, PGR, SYK, THBS1, 14-3-3σ,
APAF1, CALCA and CCND2 as the highest differentially
methylated genes between progressing and non-
progressing breast cancers. This group of genes contained
controllers of cell proliferation (P15, CCND2, PGR) and
apoptosis (APAF1, DAPK1), p53 interactors (THBS1,
DAPK1), signaling kinases (SYK, PGK1, DAPK1), drivers of
tumor development (BRCA1, 14-3-3 [50]), suggesting dir-
ect relevance of differentially-methylated/regulated genes
for breast cancer development or progression.

Marker-gene profiling
These findings led us to further refine our breast cancer
prognostic model, through procedures of best-model fit-
ting of differentially methylated gene profiles. The 21
genes that had been previously filtered (Table 1) were
thus modelled using discriminant analysis, general linear
Table 1 Gene CpG-island methylation profiles associated with
metastatic relapse

IDa P-value Fold change (absolute)

BRCA1 1.53E-05 5.52

CALCA 1.96E-04 1.66

CASP8 3.54E-03 1.82

CCND2 2.81E-04 1.62

DAPK1 1.13E-06 12.37

EDNRB 2.00E-04 2.42

FHIT 6.95E-03 1.79

ICAM1 1.60E-04 2.06

MCTS1 3.36E-02 1.56

FABP3 3.04E-04 2.78

DNAJC15 2.03E-03 3.01

MSH2 3.10E-05 13.66

MYOD1 1.40E-04 1.74

CDKN2A 1.29E-02 1.83

PAX5 6.82E-03 1.77

PGK1 1.77E-03 1.79

PGR 2.54E-03 2.9

RARB 1.39E-04 2.05

PRKCDBP 7.68E-04 3.63

THBS1 1.26E-03 2.08

RANKL 1.10E-02 2.14
a: Filtered gene list, with cutoff fold change ≥1.5, p-value <0.05. PLS-selected
genes are in bold
model selection, k-nearest neighbors, logistic regression,
PLS and partition trees. Model’ performances were eval-
uated on the basis of AUC values across five-fold ten-
runs cross-validation. The PLS model generated the
highest AUC (mean AUC ≈ 0.8) and was chosen as the
best binary classifier of progressing versus non-
progressing breast cancers. Genes selected by the PLS
model were BRCA1, DAPK1, MSH2, CDKN2A/P16,
PGR, PRKCDBP/SRBC, RANKL/TNFSF11/TRANCE
(Fig. 3). These seven genes were shown to provide the
maximal overall contribution to AUC measurements
(Fig. 4a, Table 1), i.e. the greatest impact on the classifier,
across all ten comparison runs (Fig. 4a, Table 1).

Measuring the global accuracy of prognostic gene
markers
We then went on to utilize model-fitting marker genes to
generate accuracy measurements for binary classification
of breast cancer relapse risk. The seven genes selected by
PLS were subjected to whole-model fit using the entire
data-set. Individual-gene data were then analyzed using R
statistics. Individual-gene analyses highlighted sensitivities
of 63–79 %, with 53–84 % specificity, positive predictive
value of 59–83 % and a negative predictive value of 63–
80 %. Modeling all seven genes together then allowed to
reach remarkable sensitivity (93 %) and specificity (100 %),
a positive predictive value of 100 % and a negative predict-
ive value of 93 %. These findings indicated that while indi-
vidual genes had effectiveness at classification, global
analyses were much more proficient (Fig. 4a, Table 2).
Notably, the ROC curve for all PLS-selected genes to-
gether had an AUC= 0.9643 (Fig. 4a).

Statistical power of the CpG-island methylation analysis
Statistical power analysis indicated that the methylation
patterns of five of the seven best predictors, i.e. BRCA1,
DAPK1, MSH2, PGR, PRKCDBP, possessed a high dis-
criminating power of relapsing cancer cases versus non-
relapsing controls (Additional file 2: Table S3). CDKN2A
and RANKL showed trends toward the high threshold
and contributed non-redundantly to prediction when
combined in the 7-gene set. Remarkably, the power of
the 7-gene set was 1 (Table 3), strongly supporting the
combined use of the seven gene markers.

Hierarchical clustering
Unsupervised hierarchical clustering of the tumor samples,
based on the 7-gene classifier, was performed to independ-
ently assess the prognostic-association performance above.
Hierarchical clustering demonstrated close agreement with
the accuracy measurements. Of interest, tight clustering of
13 relapsing cases was oberved. At variance, 6 other pro-
gressing cases appeared broadly distributed among tumors
with benign outcome (Fig. 4b), consistent with a distinct
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Table 2 Accuracy rates of individual selected genes and aggregated modelsa

Model Sensitivity Specificity Positive predictive value Negative predictive value Area under the ROC curve

All 7 genesb 0.93 1.00 1.00 0.93 0.97

BRCA1c 0.74 0.74 0.74 0.74 0.87

DAPK1c 0.79 0.84 0.83 0.80 0.89

MSH2c 0.74 0.84 0.83 0.76 0.89

CDKN2Ac 0.68 0.53 0.59 0.63 0.76

PGRc 0.74 0.58 0.64 0.69 0.77

PRKCDBPc 0.63 0.68 0.67 0.65 0.80

RANKLc 0.68 0.68 0.68 0.68 0.75
a:comprehensive accuracy rates and individual parameters are listed
b: global contribution of all selected genes was assessed using JMP Genomics software
c: individual gene contributions were assessed using R statistics
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heterogeneity in biological trajectories to metastatization
(manuscript in preparation).
Gene pathways associated to prognostic determinants
Pathway analysis was performed on differentially-
methylated genes (Additional file 2: Table S4; Add-
itional file 3, 4: Figures. S1, S2). Most genes/gene
relationships were found to map over key cancer and
cell-signaling biological pathways (Additional files 3, 4:
Figures S1B, S2). Ingenuity pathway analysis (IPA)
highlighted a statistically significant network of interactions
(score = 28, Fisher’s exact test p = 1x10−28) (Additional file
3: Figure S1A). 14 of the differentially methylated genes
appeared closely connected, suggesting a functionally-
relevant signaling module. This module converged on
three major hubs: ERBB2, PRG and BRCA1 (Additional
file 3: Figure S1A). This analysis revealed the p53 signaling
network as the most relevant one (p = 0.0000091); this
encompassed the CDKN2A, CCND2, THBS1 and
BRCA1 genes (Additional file 2: Table S4). These find-
ings were independently validated by STRING network
analysis (Additional file 4: Figure S2A) (p53 signaling
network, KEGG entry: map04115, p-value = 6.17 E-22).
Molecular Mechanisms of Cancer (IPA p = 0.000977)
(Additional file 2: Table S4; Additional file 3: Figure
S1B) and Pathways in cancer (KEGG entry: map05200
STRING p = 8.72 E-13) (Additional file 4: Figure S2B)
appeared as additional relevant canonical network. Of
interest, gene networks appeared related to broadly dif-
ferent cancer histotypes (Additional file 2: Table S4),
suggesting a wide significance of this cancer-associated
module, and potential relevance also in histotypes other
than breast cancer.
Table 3 Statistical power analysis of the 7-gene classifier

ID mean diff stdev BCR stdev BCS sta

Average of 7 2.112189 1.16809 0.708074 1
Discussion
In this work, we have identified a gene methylation panel
for binary classification of breast cancer progression. Util-
izing IHC parameters we had previously succeeded in
subgrouping breast cancers [3-5] for prognostic and thera-
peutic use [6]. Profiles of DNA methylation/regulation of
expression of pivotal cancer drivers [51] were expected to
provide additional valuable information, and to critically
complement current prognostic procedures. Hence, we
went on to identify gene methylation profiles that could
bear significant value for prognostic determination [31].
We first identified gene markers whose methylation pat-

terns differed between progressing and non-progressing
breast tumors. PLS k-nearest neigbors radial basis ma-
chine identified DAPK1, MDGI, BRCA1, P15, PGK1, PGR,
SYK,THBS1, 14-3-3σ, APAF1, CALCA and CCND2, as dif-
ferentially methylated genes between progressing and
non-progressing cancers. These genes included cell cycle
regulators, signaling kinases, cytoplasmic scaffold/regula-
tory molecules and p53 interactors, suggesting direct rele-
vance for breast tumor progression.
Hence, we went on to further refine our breast cancer

prognostic model, through procedures of best-model fit-
ting of differentially methylated gene profiles. PLS models
were shown to provide the highest AUC and were chosen
as the best binary classifiers of progressing versus non-
progressing breast cancers. The genes that contributed
most to a PLS binary classification model were BRCA1,
DAPK1, MSH2, CDKN2A, PGR, PRKCDBP, RANKL.
Individual-genes assessments showed 63–79 % sensitivity,
53–84 % specificity, positive predictive values of 59–83 %
and negative predictive values of 63–80 %. A 5-fold cross-
validation in selected models and PLS analysis through
distinct procedures (JMP Genomics, Genespring and R)
tistical power Gene Name

BRCA1, DAPK1, MSH2, CDKN2A, PGR, PRKCDBP, RANKL
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were used to assess gene clusters versus individual genes.
Remarkably, when modelled together, the seven genes
reached a sensitivity of 93 %, with 100 % specificity, a posi-
tive predictive value of 100 % and a negative predictive
value of 93 %. The 97 % estimates for the AUC of the 7-
gene panel model supported it as a reliable predictor of
breast cancer progression, as did the normality of the log-
transformed data distributions. Statistical power analysis
supported the strength of our analytical strategies. The
majority of the predictors (i.e. BRCA1, DAPK1, MSH2,
PGR, PRKCDBP) demonstrated high statistical power, with
a threshold of ≥80 % and an alpha significance level of
0.05. CDKN2A and RANKL were close to high statistical
power thresholds and were shown to provide non-
redundant information to prognosis when combined with
BRCA1, DAPK1, MSH2, PGR and PRKCDBP. To assess
the overall statistical power of the 7-gene set, an average
for the seven prognostic genes was computed for each in-
dividual sample. Then, the power calculation was per-
formed, as based on the distance between the mean of
relapsing cancer samples versus that on non-relapsing
cases. A remarkable power of 1 was obtained, strongly
supporting the efficiency of 7-genes panel. Unsupervised
hierarchical clustering of the tumor samples, demon-
strated close agreement with the accuracy measurements.
Of note, tight clustering of 13 relapsing cases was oberved,
whereas 6 additional cases distributed among tumors with
favourable outcome. These findings suggested heterogen-
eity in the biological paths that are followed to reach pro-
metastatic states, in spite of the sharing of candidate
causal genes.
Our model predicted that promoter DNA methylation,

with subsequent transcriptional inactivation of the 7-
gene set would be detrimental and associated with
tumor progression. Individual genes findings fully sup-
ported this model.
BRCA1 is a tumor suppressor gene [52, 53] involved

in DNA repair, cell cycle checkpoint control, and main-
tenance of genomic stability [54]. Germline mutations in
BRCA1 predispose women to breast and ovarian cancers
[55], with a 50–85 % lifetime risk of developing breast
cancer [56]. Promoter hypermethylation was shown to
cause loss of BRCA1 expression both in sporadic ovarian
cancer [57] and in hereditary ovarian carcinomas [58].
Promoter methylation was detected in 31 % of carcin-
omas but in none of the benign or borderline tumors
[59]. Levels of methylation in ovarian tumors quantita-
tively correlated with decreased BRCA1 expression [60,
61]. Hypermethylation of BRCA1 was detected at a sig-
nificantly higher frequency in serous carcinomas than in
tumors of the other histological types [62], with earlier
onset of high-grade serous ovarian cancer. BRCA1 pro-
moter methylation was frequently found in triple nega-
tive breast cancers and identified a significant fraction of
patients with poor outcomes [63]. Notably, promoter
methylation of BRCA1 was also found in 46 % of pan-
creatic neoplasms [64] suggesting a broader impact of
this alteration, beyond ovarian and breast cancers.
Death-associated protein kinase (DAPK) is a pro-

apoptotic determinant which is dysregulated in a wide
variety of cancers [65]. Hypermethylation of DAPK1 is
the most frequent molecular alteration identified in
immunodeficiency-related lymphomas [66], and was
detected in almost all cases of chronic lymphocytic
leukemia [67]. Hypermethylation patterns of DAPK were
found in head and neck cancers [68], bladder tumors
[69], and brain metastases of solid tumors [70], and were
associated with poor outcome. The DNA methyltransfer-
ase inhibitor 5-Azacytidine (5-Aza) was shown to induce
promoter demethylation and to restore mRNA expres-
sions of DAPK in osteosarcoma cells [71], confirming
DNA methylation as a determinant of transcriptional
inactivation of this gene.
PGR (progesterone receptor) is a member of the steroid

receptor family and mediates the gene transcription regu-
latory effects of progesterone. The PGR status yields prog-
nostic information in patients with node-negative breast
cancer [72]. Lack of expression of PGR, together with loss
of estrogen receptors and of Her-2/neu, identifies ‘triple
negative’ breast cancers, which are an aggressive, poor-
outcome breast cancer subgroup [4]. PGR was inactivated
by promoter methylation in tamoxifen-resistant breast
cancer cells. Following promoter demethylation with 5-
Aza, the co-addition of oestradiol (E2) restored gene
expression, and inhibited cell proliferation [73]. PGRß was
found hypermethylated in 56 % of melanoma cell lines
[74], and in acute myeloid leukemias [75].
Protein kinase C δ-binding protein is encoded by the

PRKCDBP (SRBC) gene. Frequent epigenetic or muta-
tional inactivation of PRKCDBP was observed in spor-
adic breast, lung, ovarian, and other types of adult
cancers as well as childhood tumors [76]. The expression
of the PRKCDBP protein was down-regulated in about
70 % of breast, lung, and ovarian cancer cell lines,
whereas a strong expression of the protein is detected in
normal mammary and lung epithelial cells [76].
PRKCDBP is frequently shut-down in glioblastoma mul-
tiforme [77] and in colorectal cancer [78] by promoter
hypermethylation [79]. PRKCDBP methylation in neuro-
blastoma was associated with unfavourable outcome
[80]. PRKCDBP is a proapoptotic tumor suppressor
which is activated by NF-κB in response to TNFα, sug-
gesting that PRKCDBP inactivation may contribute to
tumor progression by reducing cellular sensitivity to
TNFα. Loss of expression of the PRKCDBP protein was
associated to hypermethylation in non-small-cell lung
cancers and breast cancer cells; re-expression was ob-
served after treatment with 5-Aza [76, 81].
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p16 is a cyclin-dependent kinase inhibitor and a tumor
suppressor protein. Loss of the corresponding locus
(CDKN2A) is among the most frequent cytogenetic al-
teration events in human cancer [82]. The frequency of
inactivation of p16 by DNA methylation is even higher
than that by genetic changes in many cancers, e.g. in
gastric carcinomas (32–42 % of cases), where this is an
early event and is associated with poor clinical outcome
[83]. Correspondingly, p16 methylation is detected in
precancerous and inflammatory lesions of colon, lung,
liver, oral cavity [84], and is associated with malignant
progression [85, 86]. p16 methylation is associated with
lower overall survival and disease-free survival in non-
small cell lung cancer patients [87], melanomas [88] and
paragangliomas [85]. p16 is frequently methylated/inacti-
vated in haematopoietic malignancies, such as acute
lymphoid leukaemia (ALL), lymphomas and multiple mye-
loma [89]. 5-Aza was shown to restore gene transcription
of hypermethylated CDKN2A genes [90]. Taken together,
these findings have led to the FDA approval of 5-Aza for
treatment of patients with myelodysplastic syndromes [89].
MSH2 is a tumor suppressor protein involved in DNA

repair, e.g. base excision, and transcription-coupled hom-
ologous recombination [91-93]. Heterozygous LOH germ-
line mutations of MSH2 are causal factors of the Lynch
syndrome (hereditary non-polyposis colorectal cancer,
HNPCC) [94]. Heritable transmission of propensity to
MSH2 methylation in a family with HNPCC has been
reported [95]. Aberrant DNA methylation and epigenetic
inactivation of MSH2 play a role in the development of
ALL, through induction of cell growth and survival [96].
CpG island methylation in MSH2 associates with carcino-
genesis in colorectal carcinomas presenting with a con-
ventional adenoma-carcinoma sequence. Therefore, the
detection of MSH2 methylation may have clinical signifi-
cance in the evaluation of colon cancer patients and in a
precision-medicine management of the disease [97].
RANKL (TNFSF11, TRANCE) is a TNF family member,

and, together with its receptor RANK, is a key regulator of
cell survival. The RANKL/RANK system is modulated by
osteoprotegerin (OPG) which binds to RANKL and pre-
vents its interaction with RANK. RANKL activates Akt1
through a signaling complex involving Src and TRAF6
[98]. RANK is found expressed on cancer cell lines and
breast cancer cells in patients [99]. The RANK/RANKL
signaling plays an essential role in progestin-induced
breast cancer development [100] and stimulates breast
cancer metastasis [101]. Corresponding, RANKL triggers
the migration of cancer and melanoma cells that express
the RANK receptor [99]. The methylation status of both
RANKL and OPG quantitatively controls their levels of
expression [102]. Consistent, RANKL expression in mye-
loma cells was shown to be driven by TNFα-induced gene
demethylation [103]. Thus, RANKL and OPG act as a
cancer/metastasis control module, whose balance is deter-
mined by epigenetic regulation.
Network analysis was used to identify functional inter-

relationship across the tumor progression predictors
identified. Notably, most of these prognostic genes and
their direct interactors in the network were found to
map over key cancer cell-signaling pathways. These close
relationships suggested the existence of a functional sig-
naling module, which converged on the ERBB2, PRG
and BRCA1 hubs. Remarkably, this network module ap-
peared most related to the p53 signaling pathway (p-
value = 0.0000091). TP53 is the most frequently mutated
gene in cancer [104-106] and TP53 mutations are specific-
ally associated to tumor subgroups with distinct biological
features, particularly in breast cancer [4, 5, 33, 107]. Not-
ably, though, the 7-gene-driven network was shown to be
active also in cancer histotypes other than breast (non-
small cell lung cancer, bladder, ovary), suggesting an even
broader relevance for tumor progression.
Conclusions
Our findings identify CpG-island methylation profiles of
seven genes, i.e. BRCA1, DAPK1, MSH2, CDKN2A, PGR,
PRKCDBP, RANKL, as having a deep impact on clinical
outcome. Our findings candidate the 7-gene methylation
profile as a tool for quantifying the risk of relapse of breast
cancers, paving the way for use as a novel prognostic assay
in clinical settings.
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