712 research outputs found

    Prognosis for long-term survival and renal recovery in critically ill patients with severe acute renal failure: a population-based study

    Get PDF
    INTRODUCTION: Severe acute renal failure (sARF) is associated with considerable morbidity, mortality and use of healthcare resources; however, its precise epidemiology and long-term outcomes have not been well described in a non-specified population. METHODS: Population-based surveillance was conducted among all adult residents of the Calgary Health Region (population 1 million) admitted to multidisciplinary and cardiovascular surgical intensive care units between May 1 1999 and April 30 2002. Clinical records were reviewed and outcome at 1 year was assessed. RESULTS: sARF occurred in 240 patients (11.0 per 100,000 population/year). Rates were highest in males and older patients (≥65 years of age). Risk factors for development of sARF included previous heart disease, stroke, pulmonary disease, diabetes mellitus, cancer, connective tissue disease, chronic renal dysfunction, and alcoholism. The annual mortality rate was 7.3 per 100,000 population with rates highest in males and those ≥65 years. The 28-day, 90-day, and 1-year case-fatality rates were 51%, 60%, and 64%, respectively. Increased Charlson co-morbidity index, presence of liver disease, higher APACHE II score, septic shock, and need for continuous renal replacement therapy were independently associated with death at 1 year. Renal recovery occurred in 78% (68/87) of survivors at 1 year. CONCLUSION: sARF is common and males, older patients, and those with underlying medical conditions are at greatest risk. Although the majority of patients with sARF will die, most survivors will become independent from renal replacement therapy within a year

    Assessing the Forms and Functions of Aggression Using Self-Report: Factor Structure and Invariance of the Peer Conflict Scale in Youths

    Get PDF
    This study examined the structure of a self-report measure of the forms and functions of aggression in 855 adolescents (582 boys, 266 girls) aged 12 to 19 years recruited from high school, detained, and residential settings. The Peer Conflict Scale (PCS) is a 40-item measure that was developed to improve upon existing measures and provide an efficient, reliable, and valid assessment of four dimensions of aggression (i.e., reactive overt, reactive relational, proactive overt, and proactive relational) in youths. Confirmatory factor analyses showed that a 4-factor model represented a satisfactory solution for the data. The factor structure fit well for both boys and girls and across high school, detained, and residential samples. Internal consistency estimates were good for the 4 factors, and they showed expected associations with externalizing variables (i.e., arrest history, callous-unemotional traits, and delinquency). Reactive and proactive subtypes showed unique associations consistent with previous literature. Implications for the use of the PCS to assess aggression and inform intervention decisions in diverse samples of youths are discussed

    Evaluation of ground-level and space-borne sensor as tools in monitoring nitrogen nutrition status in immature and mature oil palm

    Get PDF
    Monitoring nitrogen (N) in oil palm is crucial for the production sustainability. The objective of this study is to examine the capability of visible (Vis), near infrared (NIR) and a combination of Vis and NIR (Vis + NIR) spectral indices acquired from different sensors for predicting foliar N content of different palm age groups. The N treatments varied from 0 to 2 kg per palm, subjected according to immature, young mature and prime mature classes. The Vis + NIR indices from the ground level-sensor that is green + red + NIR (G + R + NIR) was the best index for predicting N for immature palms (R2 = 0.91), while Vis indices blue + red (B + R) and Green Red Index from the space-borne sensor were significantly useful for N assessment of young and prime mature palms (R2 = 0.70 and 0.50), respectively. The application of vegetation indices for monitoring N status of oil palm is beneficial to examine extensive plantation areas

    Data report: evaluation of shipboard magnetostratigraphy by alternating field demagnetization of discrete samples, Expedition 361, Site U1475

    Get PDF
    The paleomagnetic shipboard data of International Ocean Discovery Program Site U1475, with a record reaching back to approximately 7 Ma, allowed for the identification of major magnetic polarity chrons and subchrons back to ~3.5 Ma. However, the natural remanent magnetization (NRM) was very weak, and transitional intervals with unclear polarity were as thick as several meters. The midpoints of these transitional intervals were reported in the shipboard results without decimal places because of the poor data quality. To evaluate and possibly refine the shipboard magnetostratigraphy, subsampling was performed across the polarity transitions. Detailed alternating field (AF) demagnetization experiments were conducted on these discrete samples and were complemented by anhysteretic remanent magnetization acquisition measurements and subsequent demagnetization. AF demagnetization data of NRM were analyzed using anchored principal component analysis (PCA) to obtain the characteristic remanent magnetization. These PCA results generally confirm the smoothed signal across polarity transitions at Site U1475. However, the midpoint depths of the top of the Keana Subchron, the Gauss-Matuyama and Matuyama-Brunhes boundaries, and the base of the Olduvai Subchron were adjusted

    A Network Integration Approach to Predict Conserved Regulators Related to Pathogenicity of Influenza and SARS-CoV Respiratory Viruses

    Get PDF
    Respiratory infections stemming from influenza viruses and the Severe Acute Respiratory Syndrome corona virus (SARS-CoV) represent a serious public health threat as emerging pandemics. Despite efforts to identify the critical interactions of these viruses with host machinery, the key regulatory events that lead to disease pathology remain poorly targeted with therapeutics. Here we implement an integrated network interrogation approach, in which proteome and transcriptome datasets from infection of both viruses in human lung epithelial cells are utilized to predict regulatory genes involved in the host response. We take advantage of a novel "crowd-based" approach to identify and combine ranking metrics that isolate genes/proteins likely related to the pathogenicity of SARS-CoV and influenza virus. Subsequently, a multivariate regression model is used to compare predicted lung epithelial regulatory influences with data derived from other respiratory virus infection models. We predicted a small set of regulatory factors with conserved behavior for consideration as important components of viral pathogenesis that might also serve as therapeutic targets for intervention. Our results demonstrate the utility of integrating diverse 'omic datasets to predict and prioritize regulatory features conserved across multiple pathogen infection models

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment

    The Anatomy of the bill Tip of Kiwi and Associated Somatosensory Regions of the Brain: Comparisons with Shorebirds

    Get PDF
    Three families of probe-foraging birds, Scolopacidae (sandpipers and snipes), Apterygidae (kiwi), and Threskiornithidae (ibises, including spoonbills) have independently evolved long, narrow bills containing clusters of vibration-sensitive mechanoreceptors (Herbst corpuscles) within pits in the bill-tip. These ‘bill-tip organs’ allow birds to detect buried or submerged prey via substrate-borne vibrations and/or interstitial pressure gradients. Shorebirds, kiwi and ibises are only distantly related, with the phylogenetic divide between kiwi and the other two taxa being particularly deep. We compared the bill-tip structure and associated somatosensory regions in the brains of kiwi and shorebirds to understand the degree of convergence of these systems between the two taxa. For comparison, we also included data from other taxa including waterfowl (Anatidae) and parrots (Psittaculidae and Cacatuidae), non-apterygid ratites, and other probe-foraging and non probe-foraging birds including non-scolopacid shorebirds (Charadriidae, Haematopodidae, Recurvirostridae and Sternidae). We show that the bill-tip organ structure was broadly similar between the Apterygidae and Scolopacidae, however some inter-specific variation was found in the number, shape and orientation of sensory pits between the two groups. Kiwi, scolopacid shorebirds, waterfowl and parrots all shared hypertrophy or near-hypertrophy of the principal sensory trigeminal nucleus. Hypertrophy of the nucleus basorostralis, however, occurred only in waterfowl, kiwi, three of the scolopacid species examined and a species of oystercatcher (Charadriiformes: Haematopodidae). Hypertrophy of the principal sensory trigeminal nucleus in kiwi, Scolopacidae, and other tactile specialists appears to have co-evolved alongside bill-tip specializations, whereas hypertrophy of nucleus basorostralis may be influenced to a greater extent by other sensory inputs. We suggest that similarities between kiwi and scolopacid bill-tip organs and associated somatosensory brain regions are likely a result of similar ecological selective pressures, with inter-specific variations reflecting finer-scale niche differentiation
    corecore