
A Network Integration Approach to Predict Conserved
Regulators Related to Pathogenicity of Influenza and
SARS-CoV Respiratory Viruses
Hugh D. Mitchell1*, Amie J. Eisfeld2, Amy C. Sims3, Jason E. McDermott1, Melissa M. Matzke1,

Bobbi-Jo M. Webb-Robertson1, Susan C. Tilton1, Nicolas Tchitchek4, Laurence Josset4, Chengjun Li2,

Amy L. Ellis2, Jean H. Chang4, Robert A. Heegel6, Maria L. Luna6, Athena A. Schepmoes6, Anil K. Shukla6,

Thomas O. Metz6, Gabriele Neumann2, Arndt G. Benecke4,5, Richard D. Smith6, Ralph S. Baric3,

Yoshihiro Kawaoka2,7,8,9, Michael G. Katze4,10, Katrina M. Waters1

1 Computational Sciences and Mathematics Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America, 2 Department of

Pathobiological Sciences, Influenza Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America, 3 Department of Epidemiology,

University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America, 4 Department of Microbiology, University of Washington, Seattle,
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Abstract

Respiratory infections stemming from influenza viruses and the Severe Acute Respiratory Syndrome corona virus (SARS-CoV)
represent a serious public health threat as emerging pandemics. Despite efforts to identify the critical interactions of these
viruses with host machinery, the key regulatory events that lead to disease pathology remain poorly targeted with
therapeutics. Here we implement an integrated network interrogation approach, in which proteome and transcriptome
datasets from infection of both viruses in human lung epithelial cells are utilized to predict regulatory genes involved in the
host response. We take advantage of a novel ‘‘crowd-based’’ approach to identify and combine ranking metrics that isolate
genes/proteins likely related to the pathogenicity of SARS-CoV and influenza virus. Subsequently, a multivariate regression
model is used to compare predicted lung epithelial regulatory influences with data derived from other respiratory virus
infection models. We predicted a small set of regulatory factors with conserved behavior for consideration as important
components of viral pathogenesis that might also serve as therapeutic targets for intervention. Our results demonstrate the
utility of integrating diverse ‘omic datasets to predict and prioritize regulatory features conserved across multiple pathogen
infection models.

Citation: Mitchell HD, Eisfeld AJ, Sims AC, McDermott JE, Matzke MM, et al. (2013) A Network Integration Approach to Predict Conserved Regulators Related to
Pathogenicity of Influenza and SARS-CoV Respiratory Viruses. PLoS ONE 8(7): e69374. doi:10.1371/journal.pone.0069374

Editor: Andrew Pekosz, Johns Hopkins University - Bloomberg School of Public Health, United States of America

Received January 22, 2013; Accepted June 7, 2013; Published July 25, 2013

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for
any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Funding: This project has been funded with Federal funds from the National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIH),
Department of Health and Human Services, under Contract No. HHSN272200800060C, and with NIH Grant P41 GM103493. The funders had no role in study
design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: hugh.mitchell@pnnl.gov

Introduction

Systems biology brings advanced bioinformatics and computa-

tional tools to bear on important health problems to identify key

elements of biological processes that may function as critical

signaling mediators. These predictive tools are important because

global profiling methods (e.g. transcriptomics) are becoming

routine approaches for examining entire systems and their

response to perturbation. Data sets generated by these platforms

are complex and require bioinformatics/computational tools for

network reconstruction and more complex predictions of network

interactions. For biological systems, network analysis has proven

useful for analyzing protein-protein, protein-DNA, and kinase-

substrate interactions, as well as for genetic interactions among

genes, in which relationships between two genes that both

contribute to a given phenotype can be seen [1]. These are

fundamentally important interactions by which cells translate

cellular signaling information into an appropriate biological

response. More recently, advanced attempts at network recon-

struction have focused on capturing regulatory associations

between genes and proteins by comparing expression patterns

across multiple conditions [2–4]. Networks of this kind are called

association networks and can capture both physical interactions as

well as more subtle, but equally important relationships between

gene pairs or within gene clusters. Prioritization of key regulators

based on network topology, which is a structural representation of

the system components that includes how information flows
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between the parts (Figure 1), has been shown to be superior to

simple ranking of differentially expressed (DE) genes [5]. Our

group and others have shown that genes occupying certain

topological positions within the networks frequently play impor-

tant regulatory roles in biological processes [4,6]. Two of the most

studied topological features include network hubs and network

bottlenecks (Figure 1). From a practical perspective, these features

are often found to be important control points within a network

that regulate and are connected to many important molecular

processes. From a technical perspective, network hubs are

identified by the degree centrality metric, which is simply the

number of edges (i.e. relationships, represented by the connecting

lines in Figure 1) associated with any given vertex (an element in

the network, e.g. a gene, identified as circles in Figure 1). Network

bottlenecks have high values for the betweenness centrality metric,

which is the number of shortest paths between all pairs of vertices

that pass through a given vertex. Bottlenecks appear to bridge

distinct regions of a network. As yet, it remains unclear which of

these topological features is the most effective predictor of

regulatory function for any given network construction approach

or biological context [2].

Bioinformatics is also faced with the challenge of how to best

integrate multiple data types. Transcriptome data provides a read-

out for gene regulation at the mRNA level, however, correlation of

mRNA with its associated protein expression can be relatively low

[7,8]. Proteome data provides a complementary picture of protein

expression levels; but current proteomics technologies provide only

limited coverage of the proteome. Despite these limitations,

integration of these discrete data types has merit and can provide

significantly improved coverage of signaling networks [7]. Our

group and others have developed advanced bioinformatics

capabilities to facilitate the integration of diverse data types

[7,9–11].

In this study, we use a network approach to predict critical

signaling regulators to influenza virus and severe acute respiratory

syndrome coronavirus (SARS-CoV) infection. These respiratory

viruses are crucial public health concerns, and the essential

mechanisms behind pathogenesis are not well understood. We

have generated large-scale time courses of transcriptome and

proteome data derived from influenza virus and SARS-CoV

infected human bronchial epithelial cells (Calu-3 cells). Our

datasets include high and low pathogenicity (HP and LP) strains of

both influenza and SARS-CoV viruses, based on published studies

in mouse models [12,13]. A recent study showed that building a

consensus network from multiple inference algorithms yielded a

better performing network than any network arising from

individual algorithms [14]. Here we apply a related concept and

use an analysis workflow consisting of 1) network inference, 2) a

combination of network topology measures and differential

expression ranking metrics to predict the best-performing ranking

of key regulators, 3) regression analysis to identify regulatory

relationships, and 4) comparison of model predictions from the

in vitro model with other systems to identify conserved behavior

(Figure 2). This procedure produced a highly prioritized list of

regulators with conserved behavior for each virus. We anticipate

that the genes resulting from this combined analysis will provide a

valuable resource for future experimental validation studies

leading to potential therapeutic intervention.

Results

Creation of Data Compendium
For experiments with SARS-CoV, Calu3 cells were infected

with either wild type (WT) virus, a mutant strain that does not

express the accessory protein open reading frame 6 (delta ORF6)

[15,16], or a SARS-like bat coronavirus containing the human

SARS-CoV spike receptor binding domain (Bat-SRBD) [12], over

a 72 hour time course. For the purposes of our study, we

considered the wild type as HP and the two mutants as LP based

on previously published studies in mouse models [12,13]. For

influenza virus, we infected cells with A/Vietnam/1203/2004

(H5N1; referred to as VN1203) for a time course of 3 to 24 hours;

or A/California/04/2009 (H1N1; referred to as CA04) or A/

Netherlands/602/2009 (H1N1, referred to as NL602) for a time

course from 3 to 48 hours. VN1203 is a HP H5N1 avian influenza

virus, while the other two strains are low pathogenic 2009

pandemic influenza viruses based on both in vitro cell viability and

in vivo survival data. Microarray and proteomic data were collected

and processed for all viral strains and conditions as detailed in

Materials and Methods. Compendia of all data for each virus type

were formed and used for all subsequent analysis. After applying

fold change and significance filters (see Methods), SARS-CoV

virus transcriptomics were reduced to 8695 differentially expressed

(DE) genes (relative to time-matched mocks). For influenza data,

we applied the fold change filter to time points at or before 12

hours, since genes affected at later time points were previously

shown to be primarily involved in cell death and not regulatory

events [17,18]. This filtering scheme resulted in 13789 DE genes

in influenza virus-infected cells. Proteomic analysis (see Methods)

resulted in 859 and 1529 DE proteins for SARS-CoV and

influenza viruses, respectively.

Network Inference
We used a network approach to predict genes that regulate the

host response to viral infection based on their topological position.

First, the Context Likelihood of Relatedness (CLR) algorithm [3]

was used to infer individual transcriptome and proteome networks

independently for both the SARS-CoV and influenza compendia

(first stage of step #1 in Figure 2). As an initial assessment of our

transcriptomic networks, we determined whether the networks

contained known edges based on transcription factor (TF)-target

interactions in a significantly greater proportion than would be

Figure 1. Network Terminology. Association networks capture both
physical and regulatory interactions between gene pairs. Network hubs
are identified by the degree centrality metric, which is the number of
edges (i.e. relationships, represented by connecting lines) associated
with any given vertex (elements being connected, e.g. genes, identified
as circles). Network bottlenecks have high values for the betweenness
centrality metric, which is the number of shortest paths between all
pairs of vertices that pass through a given vertex. Network neighbors
are vertices connected by a single edge.
doi:10.1371/journal.pone.0069374.g001

Prediction of Respiratory Virus Regulators
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Figure 2. Workflow for prediction of conserved regulators. Step 1: Network inference. Network relationships are reconstructed from
transcript and protein quantification data by finding similar expression patterns across multiple conditions. Protein and transcript networks are
integrated to form a unified network (in the case of the SARS-CoV data; see text). Step 2: Ranking approaches. Network genes were ranked using
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expected to arise by chance. To determine the expected number of

randomly occurring edges, we performed 1000 iterations of

scrambling the parent vertices for all edges in the networks (see

Methods). The resulting vertices were matched to computed TF-

target pairs from the TRANSFAC dataset available through the

molecular signatures database (msigdb, found at http://www.

broadinstitute.org/gsea/msigdb/collections.jsp). The inferred

transcriptome networks contained significantly more known

regulatory edges for SARS-CoV and influenza viruses than seen

from randomly scrambled edges (as calculated by z-test, Figure 3a).

As an additional validation of the network inference approach,

we utilized an available dataset derived from 400 siRNA

knockdown experiments in human umbilical vein endothelial cells

(HUVEC) [19]. We reasoned that network neighbors (or genes

with a predicted relationship) should have regulatory influence on

one another, such that the set of genes affected by siRNA targeting

of a particular gene should be a similar set of genes to those

neighboring the target in an association network. The results show

that for a significant number of genes there is significant overlap

between the set of differentially expressed genes when the gene is

knocked down and the set of network neighbors of that same gene

(Figure 3B). The percentage of these genes with significant overlap

was compared to results found by comparison to random

networks. Thus the networks inferred from the transcriptome

compendia clearly provide predictive power.

Network Integration
Since the proteome data covers only a fraction of the gene

products of the transcriptome data platform, the resulting

proteome network was much smaller than the transcriptome

network, as would be expected. We therefore integrated the two

data types into a single network, as demonstrated previously

[7,11]. We initially merged all of the vertices and edges for the

networks, yielding two integrated networks, one for each virus.

However, when we ordered all vertices according to their

betweenness scores, we identified artificially high betweenness

scores for vertices that happen to be common in both datasets,

which is unrelated to their true betweenness in the regulatory

network (Figure S1-top). To alleviate this potential artifact in the

integrated networks, we selected proteome edges for integration in

which both parent vertices were already present in the

transcriptome network (i.e., ‘‘conservative integration’’; Figure

S2). In this way, only new edges (566 for influenza virus, 285 for

SARS-CoV), not new vertices, were introduced into the network

so that no artificial bottlenecks were introduced (Figure S1,

bottom). No major changes in degree centrality (hubs) were

observed as a result of integration (data not shown).

We determined the effect of proteome data integration on

network bottlenecks by comparing the difference in betweenness

for all vertices before and after integration. We found that

proteome data integration had minimal effect on the influenza

network, since the top 200 vertices in the integrated network

showed only minor shifts in betweenness ranking (less than 30

positions, with 98% less than 5 positions). Further influenza virus

network analysis therefore included only transcriptome data.

However, there were vertices in the top 200 genes of the SARS-

CoV betweenness ranking that showed large jumps in ranking

positions. Table 1 shows the 8 genes with a greater than 1000

position shift into the top 200 ranked betweenness genes. Six of

these have been previously shown to be associated with SARS/

virus infection (Table 1), thus demonstrating the advantage of

proteomics integration. Thus for SARS-CoV, an integrated

transcriptome/proteome network was used for further studies.

Regulatory Candidate Ranking
We next desired to use network topology and DE to predict

regulators of the infection process (step #2 in Figure 2). While

both hubs and bottlenecks have been shown to represent

important network vertices in various contexts [4–6,20–22], it

was unclear whether both represented important regulatory

elements in our system. This question would be largely irrelevant

if hubs and bottlenecks from the networks were found to represent

the same group of genes. Additionally, while network topology

allows prediction of regulatory elements in a biological system,

they do not necessarily address pathogenicity per se. For this

reason, genes were also ranked according to their overall

differential expression between HP and LP strains in SARS-

CoV and influenza virus infections. By comparing the top 10%

within each ranking metric, we confirmed that hubs, bottlenecks

and DE genes from our networks represent distinct, but not wholly

independent groups (Figure 4).

A recent study showed that combining the results of multiple

inference algorithms produced a better-performing network than

networks arising from individual algorithms [14]. We chose to

follow this concept and combine topology metrics with DE

expression to determine if merged rankings could confer better

performance than individual rankings, based on a statistical

measure of performance termed enrichment significance (Figure 4).

We ranked the gene lists by the betweenness scores for bottlenecks,

degree scores for hubs and the magnitude of difference for the DE

genes. We also evaluated the combined rankings of any two of

these three, and a combined ranking of all three metrics (see

Methods). To evaluate the different influenza ranking metrics, we

exploited the fact that several groups [23–29] have used

interaction screens, knockdown analyses, and knowledge-based

approaches to produce lists of host genes that are important for

influenza virus infection. We used these lists to determine which of

our influenza rankings, or combinations of them, showed

enrichment in these previously-determined lists. To avoid the

necessity of choosing arbitrary cutoffs for our ranked lists for

enrichment analysis, we chose to use the Gene Set Enrichment

Analysis (GSEA) tool, which identifies members of a collection of

curated gene sets that show statistical enrichment near the top (or

bottom) of a ranked gene list [30]. The statistical significance for

each enrichment across the gene sets was incorporated into a

single score (Methods), which was then compared to a series of

enrichment analysis runs using gene lists with permuted rank

order, representing background enrichment ‘‘noise’’ (Figure 5).

three distinct measures: network betweenness, degree centrality, and differential expression between pathogenicity levels. Gene set enrichment
analysis (GSEA) was used to test each individual ranking, and each combination of rankings, for how effectively they prioritize genes known to be
relevant to viral infection. Step 3: Model construction. Multivariate regression was used to build regulatory models using the union of known
transcription factors and top prioritized genes from step 2 as candidate regulators. The modeling process predicts a small set of regulatory genes that
are likely to regulate each target (cluster of genes). Step 4: Cross-system comparison. Performance of the resulting models was tested in either an
in vivo mouse model (influenza virus) or an ex vivo human primary lung epithelial model (SARS-CoV). In vivo and ex vivo models are both represented
by the outlined mouse shape in the figure. Genes with conserved regulation in the new system were prioritized as conserved regulators for the
respective virus infection (Tables 4 and 5). Green check marks indicate steps validated through comparison to/integration with outside experimental
data.
doi:10.1371/journal.pone.0069374.g002
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Comparison of the rankings’ enrichment scores showed that the

combined betweenness/degree ranking yielded the highest score,

thus suggesting this ranking will also yield the highest proportion of

novel regulators of influenza virus infection.

We note that the DE rank alone yields very low enrichment,

which is likely responsible for the relatively low enrichment in the

combined betweenness/degree/DE ranking. Figure S3 represents

the significance level attained for each individual gene set in heat

map form to demonstrate that the reference gene lists are

complementary and not altogether overlapping. Interestingly, the

list based on a comprehensive ‘‘expert’’ literature review

attempting to identify the most relevant genes involved in host/

influenza interaction (i.e. ‘‘Zhang et al’’ [29] in Figure S3) yielded

high enrichment for all rankings, while lists based on experimental

results (i.e. the other studies assessed in Figure S3) showed varying

degrees of lesser enrichment.

The approach described above allowed us to use current

knowledge of influenza-related genes to predict the most ideal

gene ranking for that virus. However, there is little comparable

knowledge of SARS-CoV-related genes. While the influenza lists

may be partly applicable to SARS-CoV, it is not known how

reliable a comparison of this nature would prove. We therefore

used gene sets available in msigdb, a large collection of over 8500

gene sets that represent pathways, cancer gene neighborhoods,

genes downstream of various perturbations, transcription factor

and miRNA target groups, chromosomal position, and gene

ontology categories. Msigdb was searched for gene sets with names

containing the terms ‘virus’ or ‘viral’, which yielded 299 sets. We

reasoned that these gene sets would function well for enrichment

analysis of general viral processes. We applied the virus-related

enrichment analysis to the same SARS-CoV rankings from the

integrated network in an identical manner as was applied to the

influenza data (Figure 6). In contrast to the observations for

influenza virus, the DE ranking showed strong enrichment for

SARS-CoV, which conferred still higher enrichment on combined

rankings that incorporated DE, with the combined degree/

betweenness/DE ranking receiving the highest overall score

(Figure 6). Comparing virus-related enrichment scores for

SARS-CoV rankings and influenza-specific enrichment scores

for influenza rankings showed that for both viruses, combining the

hub and bottleneck ranking yielded better enrichment than for

either ranking alone. A bootstrap approach (methods) showed this

difference in enrichment to be statistically significant for SARS-

CoV and influenza virus, and showed the degree/betweenness/

DE ranking to be significantly higher than all other rankings for

SARS-CoV. Figure S4 shows the enrichment of SARS rankings

across the virus-related gene sets.

We utilized the respective highest-scoring rankings for SARS-

CoV and influenza virus to predict regulatory candidates. The top

50 ranked genes resulting from these prioritizations are presented

in Tables 2 and 3, with the complete rankings in Tables S1 and

S2. To show the relationships in the network relevant to some of

these genes, Figures S5–S10 display limited networks (connectivity

to primary and secondary network neighbors) for the first three

genes in each list with informative names. For SARS-CoV, these

genes are CREB5, DUSP8, and NFKBIA (Figures S5, S6 and S7

respectively); for influenza virus they are PCGF5, NFE2L3 and

HLA-E (Figures S8, S9 and S10 respectively).

After establishing the GSEA enrichment ranking approach, we

used it to test whether the conservative proteome/transcriptome

integration approach described above conferred an improvement

over transcriptome networks alone. Betweenness centrality of

networks with and without proteome data integration was

evaluated. SARS-CoV networks showed a significant enrichment

Figure 3. Inferred network edge validation. A) Network edges
were compared to a predicted transcription factor – target database.
The number of transcriptome network edges for each virus that was
also present in the database (red) was compared with the number of
matching edges in 1000 random networks (gray) to estimate the
number of matching edges expected from chance. B) Relationships
between genes targeted in a large siRNA-targeting study [19] and the
downstream affected genes were compared to relationships predicted
from our network inference approach. Results show the number of
genes that exhibited statistically significant overlap between their
network neighbors and perturbed genes from the siRNA targeting
study. Red designates the overlap with neighbors from the actual
network; grey designates overlap with neighbors from 500 random
networks (see Materials and Methods). Error bars represent standard
deviation of the distribution of gene percentages with significant
overlaps.
doi:10.1371/journal.pone.0069374.g003

Prediction of Respiratory Virus Regulators

PLOS ONE | www.plosone.org 5 July 2013 | Volume 8 | Issue 7 | e69374



increase in betweenness ranking when proteome data were

incorporated (p = 0.0029). No improvement was seen with

integration of influenza proteome data, but this is not surprising

given that no dramatic shifts in bottleneck position were observed

in our analysis above. To determine the effect of incorporating

random edges (using the conservative approach) into the SARS-

CoV transcriptome network, an equivalent number of random

edges were added to the network and the resulting new

betweenness was calculated. Rather than improving the enrich-

ment as seen when the proteome edges were added, random edge

integration caused less enrichment, although the difference did not

reach significance (p = 0.46). Although the vertices in the

integrated SARS-CoV network consist of both transcripts and

proteins, for convenience we will use the term ‘‘genes’’ to refer to

all network vertices from this point forward.

Building a Predictive Model to Assess Conservation
A critical question regarding the use of model systems is how

well the experimental model represents the target system. Calu3

cells provide a convenient in vitro model for lung epithelium, but it

is unknown to what extent the pathways and mechanisms found in

the in vitro model will translate to a more realistic model, such as

primary cells or in vivo animal models. In order to demonstrate

that our approach based on in vitro data provides predictive

insights relevant to an in vivo model, we used the Inferelator

software [31] to determine how well models derived from Calu3

data would apply to data from other experimental systems [18]

(steps 3 and 4 in Figure 2). The Inferelator uses multivariate

regression to select a small set of regulators that are the most likely

to be influencing a regulatory target. Expression data from the

Calu-3 cells were collapsed using hierarchical clustering, such that

Table 1. SARS genes whose topology is significantly altered by proteome data integration.

Symbol Uniprot ID Entrez ID Reference to involvement in SARS/virus infection

STAT1 STAT1_HUMAN 6772 [64]

B2M B2MG_HUMAN 567 [65]

HSPA1A HSP71_HUMAN 3303 [66]

MIF MIF_HUMAN 4282 [67]

WARS SYWC_HUMAN 7453

Annexin A4 ANXA4_HUMAN 307 [68]

HIST1H1E H14_HUMAN 3008

DNAJB1 DNAJB1_HUMAN 3337 [69]

KRT23 K1C23_HUMAN 25984

doi:10.1371/journal.pone.0069374.t001

Figure 4. Overlap between rankings. Genes were ranked according
to betweenness, degree and differential expression (DE) as described in
Materials and Methods. Venn diagrams indicate the overlap in the top
10% of each of these rankings for both viruses as indicated.
doi:10.1371/journal.pone.0069374.g004

Figure 5. GSEA-based enrichment analysis of influenza rank-
ings. Seven distinct rankings of genes from the influenza network were
evaluated for their enrichment in various influenza-related gene lists.
The seven rankings consisted of network betweenness centrality,
network degree centrality, differential gene expression (DE), combined
betweenness and degree, combined betweenness and DE, combined
degree and DE, and a combined ranking from all three. The average
enrichment score in all influenza gene lists is shown for each of the
seven rankings. Average enrichments were also calculated for 100
scrambled rankings of the same genes. P-values are calculated by
comparing each ranking’s enrichment score to the distribution of
enrichment scores of random rankings (see Methods). Single star
indicates p-value below .05; double star indicates p-value below .001.
doi:10.1371/journal.pone.0069374.g005
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clusters of genes with similar expression profiles were chosen as

regulatory ‘‘targets’’. A list of candidate regulators was supplied to

the Inferelator software as input, which was compiled from known

transcription factors and the top candidate regulators from our

ranking strategy [32]. A prediction of the critical regulators of a

gene cluster can be used to predict the behavior of that gene

cluster based on the behavior of its predicted regulators.

Behavioral conservation can therefore be evaluated by comparing

predicted cluster expression profiles with expression data in a

distinct, but comparable biological system. We applied the SARS-

CoV model to a dataset of SARS-CoV infection of primary

human airway epithelial (HAE) cells. These cultures are an in vitro

model of the human lung that morphologically and physiologically

recapitulates the epithelium of the conducting airway and have

been demonstrated to be permissive for SARS-CoV infection [33].

The cultures differentiate from primary cells into ciliated, goblet

(mucin-producing), and basement membrane cells in a stratified

epithelium. For influenza data, the Calu3 model was fitted to a set

of mouse influenza infection experiments using VN1203 to infect

mice with 103, 104, or 105 PFU at 1 and 2 days post-infection [18].

Calu3 models were applied to new data (HAE for SARS-CoV,

mouse for influenza virus) by using the expression levels of the

input regulators (measured in the new system) to calculate the

expression level of each gene cluster in the new system, using the

model learned from the Calu3 experimental system. Figures 7A

and B show the correlation of Calu3 models’ predicted output of

each gene cluster with the observed output of the actual in vivo or

ex vivo data. Since the SARS-CoV Calu3/HAE comparison is

within the human system and within a cell culture context, while

the influenza Calu3/mouse comparison spans distinct species and

model system types, these comparisons from the two virus types

yielded somewhat different results. Unsurprisingly, overall, the

Figure 6. GSEA-based enrichment analysis of SARS-CoV
rankings. Seven rankings of genes from the SARS-CoV network were
assessed for enrichment as in figure 5, this time using the 299 gene sets
from the Molecular Signatures Database matching the search keys
‘‘viral’’ or ‘‘virus’’. Average scores are compared to random rankings.
Double stars indicate p-values ,0.001.
doi:10.1371/journal.pone.0069374.g006

Table 2. Top genes from SARS-CoV prioritization.

Symbol entrez refseq

CREB5 9586 NM_182898

DUSP8 1850 NM_004420

NFKBIA 4792 NM_020529

IL6 3569 NM_000600

TNFAIP3 7128 NM_006290

ZC3H12A 80149 NM_025079

ATF3 467 NM_004024

FAM46A 55603 NM_017633

NUAK2 81788 NM_030952

AXUD1 64651 NM_033027

GEM 2669 NM_005261

JUN 3725 NM_002228

NFKBIE 4794 NM_004556

ZNF433 163059 NM_001080411

HES1 3280 NM_005524

REL 5966 NM_002908

C3orf59 151963 NM_178496

BC018597 NA BC018597

PTX3 5806 NM_002852

CH25H 9023 NM_003956

IL1A 3552 NM_000575

PPP1R15A NA NM_014330

TSC22D2 9819 NM_014779

X15675 NA X15675

INHBA 3624 NM_002192

IL32 9235 NM_001012631

C3orf52 79669 NM_024616

NPFFR2 10886 NM_053036

DNAJA4 55466 NM_018602

HSPA6 3310 NM_002155

LOC442229 NA BC024198

ENST00000342294 6434 ENST00000342294

ZBTB10 65986 NM_023929

MAP3K14 9020 NM_003954

CCRN4L 25819 NM_012118

IKZF3 22806 NM_012481

M74509 NA M74509

RELB 5971 NM_006509

LOC401317 9586 ENST00000381802

TMEM16C 63982 NM_031418

BF514513 27 BF514513

IL29 282618 NM_172140

PIM3 415116 NM_001001852

NR1D1 9572 NM_021724

CXCL2 2920 NM_002089

CCNYL1 NA NM_152523

PER1 5187 NM_002616

TNF 7124 NM_000594

OVOL1 5017 NM_004561

EYA1 2138 NM_000503

doi:10.1371/journal.pone.0069374.t002
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Calu3-based model of SARS-CoV infection was more compatible

with HAE data than was the Calu3 model of influenza infection

with the mouse data. However, assessing agreement for individual

clusters showed that 6 out of 28 clusters yielded correlation above

0.8 in SARS-CoV, while 9 out of 30 clusters had correlation above

this level in influenza virus. As an illustration, the expression

profile of a single high performing cluster prediction from each

virus is included for comparison with the observed expression of

the cluster (Figure 7b). The high performing SARS-CoV clusters

were enriched for genes involved in the immune response. The

two highest performing influenza clusters were also enriched for

immune response genes, while another showed enrichment for

transcription regulation. For each virus type, we also generated

100 models from datasets with scrambled genes but with the

cluster structure intact. In this way, we compared the observed

level of cross-model fitting with the level of model fitting expected

by random chance. Figure 7c shows the average Pearson’s

correlation of the clusters’ predicted profiles and the observed

profiles from the new data. The average correlation of models

derived from data with scrambled rows is shown for comparison.

While these results demonstrate the high degree of regulatory

conservation between the different models, we decided to identify

the individual genes that displayed the most conserved response to

infection across model systems. To this end, we used the cross-

prediction metric (Xpred) described in [18], which is a measure of

how well the behavior of a gene is predicted across model systems.

Xpred rankings are shown in Table S3 (SARS-CoV) and Table S4

(influenza virus). To determine if these genes showed enrichment

in functional categories, we used GO term enrichment analysis on

genes with the highest Xpred scores in each of the two virus

datasets. For both viruses, genes with a conserved response showed

functional enrichment in innate immune response signaling (not

shown). Thus while not all regulatory mechanisms are conserved

between model systems, a component of the innate immune

response is well-preserved.

We next wished to determine the overlap between these genes

showing conservation of behavior between model systems, and the

genes predicted previously from regulatory candidate ranking

(tables 2 and 3). This intersection represents genes from each virus

dataset that are both behaviorally conserved across different

systems, and are predicted to fill regulatory roles. Figure 2

illustrates the process of isolating these genes. Intersection of the

top 5% of each of the two rankings yielded highly significant

overlaps, with 37 overlapping genes for SARS (p-value,2e-6,

genes in table 4) and 24 for influenza (p-value = 0.00043, genes in

table 5). We refer to genes highly ranked in both categories as

‘‘conserved regulators’’.

Interestingly, the overlap of conserved regulators across viruses

consisted of two genes: TNF and TNFAIP3, which are both

obvious regulators of the inflammatory response. The fact that

both regulators common to both viruses are potentially involved in

inflammation underscores the critical role this function plays in the

pathogenicity of respiratory viruses.

Discussion

The intent of this study was to use in vitro models of severe

respiratory viral infection to predict key elements of the host

response. We used a novel integrated network ranking approach to

identify promising candidates for future studies that are predicted

to play critical roles in viral infection. We implemented a four-

stage analysis workflow to achieve this goal, with each stage

involving comparison with and incorporation of several sources of

outside data. Corroboration with independent studies both greatly

Table 3. Top genes from influenza regulatory prioritization.

gene.symbol entrez refseq

LOC652411 NA XR_019314

PCGF5 84333 BC007377

NFE2L3 9603 NM_004289

CA314451 NA CA314451

HLA-E 3133 NM_005516

LOC646626 NA XM_942822

SEMA7A 8482 NM_003612

BC089454 NA BC089454

AK056449 NA AK056449

TNF 7124 NM_000594

AK026497 7528 AK026497

LRP4 4038 NM_002334

THC2670384 NA THC2670384

NLRP3 NA NM_004895

HLA-C NA BC002463

SALL2 6297 NM_005407

PML 5371 NM_002675

SPAG5 10615 NM_006461

HBEGF 1839 NM_001945

CIT 11113 NM_007174

THC2621771 NA THC2621771

NT5E 4907 NM_002526

SEMA3A 10371 NM_006080

ENST00000342294 6434 ENST00000342294

DDX58 23586 NM_014314

KIAA1704 55425 AB051491

ID1 3397 NM_002165

UBL3 5412 NM_007106

AK129584 NA AK129584

PLK3 NA NM_004073

BC033829 9590 BC033829

BC064492 7329 BC064492

CCDC6 8030 NM_005436

FAM83E NA NM_017708

HCP5 NA L06175

CRSP2 9282 NM_004229

CD69 969 NM_001781

HOXB6 3216 NM_018952

SLC16A2 6567 NM_006517

MICAL2 9645 NM_014632

CPT1C 126129 NM_152359

DB340110 NA DB340110

C20orf142 128486 BC029662

SORT1 6272 NM_002959

SPATA1 1.01E+08 NM_001081472

HLA-B 3106 NM_005514

ADRB2 154 NM_000024

A_23_P66347 NA A_23_P66347

ND1 NA ENST00000361390

KIAA1370 56204 NM_019600

doi:10.1371/journal.pone.0069374.t003
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strengthened and validated our approach, thus increasing the

value of the candidates we propose.

We inferred separate transcriptome and proteome association

networks as a foundation for our analysis due to the inherent

differences in their data structure and dynamic range. To verify

that the inference procedure produced valid edges, predicted

network edges were compared with pairings of transcription

factors with predicted targets based on promoter sequences.

Because of the size of the transcriptome network, a large number

of regulatory interactions were expected by chance. However, the

inferred networks contained significantly more ‘‘known’’ edges

than expected by chance. We also corroborated our network

construction in a completely separate manner by comparing

neighbors of vertices in our networks to genes affected by siRNA

knockdowns in a distinct system and again found much greater

overlap than would be expected by chance.

Despite the limited nature of proteome data, protein expression

levels supply important information that transcriptome data

cannot provide. Due to regulation at translational, post-transla-

tional and protein stability levels, mRNA levels are not strictly

correlated to protein expression and sometimes are not correlated

at all. Previous studies demonstrated that integration of proteome

data into transcriptome networks improved network performance

[7,11,34]. For the current study, we demonstrated an improve-

ment in network performance when SARS-CoV proteome and

transcriptome data were integrated. No corresponding improve-

ment was observed from integration of influenza proteome data,

which may be related to the fact that unlike the SARS-CoV data

sets, not all experimental conditions present in the influenza

transcriptome data set had corresponding proteome data. Further,

the slower kinetics of SARS-CoV compared to influenza virus may

affect what can and can’t be observed as protein abundance

changes before cell death occurs. The fact that SARS-CoV doesn’t

kill cells for several days after infection may allow a better chance

for recovery of proteome data influence.

In the past, various methods have been employed to predict

‘‘important’’ vertices from network topology analysis. Multiple

network centrality measures have been shown to identify high

centrality vertices that are of greater interest than vertices with low

centrality. To predict key regulators of respiratory virus infection,

we chose to focus on betweenness and degree centrality, since

these have been shown to be of interest in the study of inferred

networks derived from high-throughput biological data [2,4–6,20–

22]. In addition to network topology, genes/proteins that are

highly DE are of potential interest. Employing the ‘‘wisdom of

crowds’’ concept [14], we hypothesized that some/all of these

prioritization strategies could be combined to produce an

optimized ranking, such that the most influential/critical genes

Figure 7. Model system comparison based on Inferelator
regression models. Regulatory influence models for each gene
cluster of both viruses were applied to comparable datasets from

distinct model systems. For SARS-CoV, regulatory influences inferred
from Calu3 data were applied to SARS-CoV infection data from a
primary human airway epithelial cell model system. For influenza, the
Calu3 model was applied to influenza infection data from C57BL/6 mice.
The observed gene expression profile of the non-Calu3 data clusters
was compared to the predicted gene expression profile based on the
Calu3 model. Correlations were calculated for this comparison from
each cluster and are shown in A. In B, a sample expression profile from a
highly-predictive cluster from each virus is shown with the observed
non-Calu3 expression profile shown in red, compared to the predicted
expression profile from the Calu3 model in green. In C, the average
cluster correlation for the SARS-CoV and influenza comparisons is
shown, in comparison to the correlation obtained from applying 100
random models to the corresponding alternative model system. P-
values were obtained by comparing each correlation with the
distribution of 100 correlations based on random models.
doi:10.1371/journal.pone.0069374.g007
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are ranked the highest. Enrichment analysis from both SARS-

CoV and influenza showed that combinations of multiple rankings

resulted in higher enrichment than individual rankings alone.

Hubs and bottlenecks have previously been separately shown to

represent important regulatory components of biological systems,

however we show that for both SARS-CoV and influenza virus, a

combination of these two network centrality measures yielded a

higher-performing ranking than either ranking alone (Figures 5–6).

This finding suggests that genes that are (to some extent) hubs and

bottlenecks are most relevant to SARS-CoV and influenza

infection. For influenza, this combined ranking received the

highest enrichment, while a combination of degree centrality,

betweenness centrality and DE was the highest overall performing

ranking for SARS-CoV. Interestingly, the influenza DE ranking

performed very poorly, far below topological measures and

comparable to randomly ordered rankings. This was in contrast

to the SARS-CoV DE ranking which compared even better than

individual topology-based rankings. While the reason for poor

influenza DE performance is unknown, it may be related to our

observation that 96% of all genes in the influenza compendium

exhibited more extreme differential expression in HP than LP

strains, while only 61% of genes examined in the SARS-CoV

analysis showed this trend. The overwhelming surge in gene

expressing seen in HP influenza virus may thus have obscured any

enrichment by flooding the analysis with significantly changed

genes. Despite the absence of a DE component in the influenza

virus regulatory prioritization, the dominant expression pattern of

HP influenza likely exerts a strong influence in the network

topology, so that topological measures capture features of HP

virus.

Another aspect of analysis validation that is frequently ignored is

the question of how accurately one model system represents the

target system. While complete ‘omics studies of human respiratory

infections are not available, we did have access to data from

comparable experiments that could be thought of as more

representative of human infection, which allowed us to determine

the comparability of different model systems. For SARS-CoV, we

compared Calu3 infection to a well-differentiated, primary cell

epithelial model, in which physiological features such as active

cilia, mucus production and an air-liquid interface are present

Table 4. Conserved regulators from SARS-CoV virus.

Gene symbol entrez Refseq

CREB5 9586 NM_182898

DUSP8 1850 NM_004420

NFKBIA 4792 NM_020529

IL6 3569 NM_000600

TNFAIP3 7128 NM_006290

ZC3H12A 80149 NM_025079

ATF3 467 NM_004024

AXUD1 64651 NM_033027

JUN 3725 NM_002228

BC018597 NA BC018597

PTX3 5806 NM_002852

IL1A 3552 NM_000575

HSPA6 3310 NM_002155

ZBTB10 65986 NM_023929

CCRN4L 25819 NM_012118

LOC401317 9586 ENST00000381802

IL29 282618 NM_172140

CXCL2 2920 NM_002089

PER1 5187 NM_002616

TNF 7124 NM_000594

PMAIP1 5366 NM_021127

IL28A 282616 NM_172138

SOCS1 8651 NM_003745

HDAC9 NA NM_058176

IFNB1 3456 NM_002176

CXCL10 3627 NM_001565

CCL20 6364 NM_004591

CD274 29126 ENST00000381577

C1orf38 NA BC031655

ZC3HAV1 56829 NM_024625

HSPB8 NA NM_014365

NCOA7 135112 NM_181782

THSD7A 221981 ENST00000262042

TRAF1 7185 NM_005658

FLJ25801 205860 NM_173553

IL28B NA NM_172139

MT1B 4490 NM_005947

Bold: genes overlapping with the influenza virus list.
doi:10.1371/journal.pone.0069374.t004

Table 5. Conserved regulators from influenza virus.

Gene symbol entrez Refseq

TNF 7124 NM_000594

LRP4 4038 NM_002334

HBEGF 1839 NM_001945

DDX58 23586 NM_014314

CD69 969 NM_001781

SLC16A2 6567 NM_006517

YRDC 79693 NM_024640

TNFAIP3 7128 NM_006290

RGS16 6004 NM_002928

ZNFX1 57169 NM_021035

PAK1IP1 55003 NM_017906

SDCBP 6386 NM_005625

L3MBTL2 83746 NM_031488

MPHOSPH10 10199 NM_005791

TAP1 6890 NM_000593

ARL3 403 NM_004311

NMI 9111 NM_004688

PARP12 64761 NM_022750

IL4I1 259307 NM_172374

STAG3 10734 NM_012447

SAA2 NA NM_030754

CBX7 23492 NM_175709

EIF4A2 NA NM_001967

ISG20 3669 NM_002201

Bold: genes overlapping with the SARS-CoV list.
doi:10.1371/journal.pone.0069374.t005
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[33,35]. Using regression to identify the most likely regulators of

clusters in the data, we showed that the selected set of regulatory

influences for each gene cluster in the Calu3 model was able to

predict the behavior in the differentiated model relatively well,

with a correlation as high as 0.89, with most clusters showing

correlation above 0.5. Interestingly, despite the obvious differences

between in vitro cell culture systems and animals, the comparison of

Calu3 influenza infection to flu-infected mice showed correlation

coefficients greater than 0.50 for 12/30 clusters (Figure 7a). The

fact that the behavior of several clusters was successfully predicted

in the mouse suggests that some aspects of infection are preserved

across systems. We observed that the most accurately predicted

gene clusters from both SARS-CoV and influenza virus showed

functional enrichment for pathways related to the immune

response (data not shown); thus innate immunity may be one

aspect of infection that is well-preserved across multiple models of

infection. We used the regression results to identify individual

genes whose regulation displayed high conservation between

systems, then combined this ranking with the results of our

regulatory prediction process to predict conserved regulators.

Due to the known relevance of the specific genes isolated by our

analysis to severe viral infection, the results of our analysis indicate

a successful outcome. This is demonstrated by the presence of

genes such as TNF and DDX58 in the influenza conserved

regulators, which are known to be important regulators during

influenza virus infection [36–38], and suggests that our prioriti-

zation approach has successfully promoted important genes to the

top of the rankings. Similarly, DUSP8, IL6, CXCL10, and

NFKBIA are up-regulated in SARS patients [39,40], while PTX3

[41] and CXCL2 [42,43] have been shown to be involved in

SARS-CoV infection. Further, the top 100 genes in the SARS-

CoV list of regulators includes all three JNK/p38-specific MAPK

phosphatases (DUSP8, DUSP10, and DUSP16), which is signif-

icant since SARS-CoV is known to up-regulate JNK [44,45]. All

three DUSP genes are highly up-regulated (data not shown),

perhaps representing a negative feedback loop as the host cell

attempts to counteract the virus-induced JNK activation. Inter-

estingly, the predicted conserved regulators for SARS-CoV

identified the CREB/ATF family members CREB5 and ATF3

as highly ranked. We determined that the best ranking method for

the SARS-CoV dataset was a combined DE/hub/bottleneck

metric, such that designation as a conserved regulator for SARS-

CoV required relatively high differential expression between

strains of differing pathogenicity, high network degree ranking,

and high network betweenness, in addition to exhibiting conserved

behavior between Calu3 and the primary airway epithelial model.

CREB5 was ranked #1 in the combined SARS-CoV ranking (out

of 7186), while ATF3 was ranked #8. CREB5 was not at all highly

ranked in influenza network topology measures, however its

differential expression profile exhibited down-regulation in HP

virus, and up-regulation in LP strains (not shown). CREB/ATF

family transcription factors are known to integrate signaling from a

wide array of pathways, resulting in both gene activation and

repression. Little is known about the specific pathways regulated

by CREB5, however ATF3 is known to mediate repression of

inflammatory signals, and may function as an oncogene or tumor

suppressor depending on cell type and context [46]. While CREB5

and ATF3 have a generally strong induction pattern in SARS-

CoV, the induction is relatively mild for influenza virus. The intra-

and inter-virus comparison of the expression patterns of these

genes, as well as their placement in the topology of the SARS-CoV

network suggest that signaling through one or both these

molecules is an important component of SARS-CoV pathogenesis

that is distinct from influenza virus. The overlap between the

influenza virus and SARS-CoV conserved regulators appears to

highlight the importance of the inflammatory response in both

viruses. The role of TNF and TNFAIP3 in inflammation is well

known, and TNFAIP3 has been shown previously to play a

specific role in influenza infection [47].

The development and evaluation of these methods involved

comparing to, or integrating with other sources of experimental

data, thus providing a measure of validation (Figure 2 indicates

steps where outside data was integrated). For the first stage, edges

in the inferred networks were compared with relationships

acquired from separate sources (predicted transcription factor

binding sites and experimentally observed siRNA targeting effects)

to show statistically significant agreement. For the second stage,

ranking method selection was based entirely on how well the

ranking demonstrated enrichment in experimentally-derived gene

sets. For the last stage, the final selection of conserved regulators

was performed by identifying regulators with similar behavior in

distinct, highly relevant model systems, thus providing a final level

of validation from independent studies.

In conclusion, we have used a systems biology approach to

predict a subset of genes/proteins likely to function as key

regulators of SARS-CoV and influenza, respectively, using

integrated transcriptome and proteome data. We have used

crowd-based approaches and multivariate regression to prioritize

the most likely candidates, and have introduced a novel approach

to metric selection using the GSEA software. The resulting high-

ranking genes provide a rich set of research directions for ours and

other groups interested in respiratory viral infections to pursue in

the future.

Materials and Methods

Ethics Statement
Human tracheobronchial epithelial cells were obtained from

previously de-identified airway specimens resected from patients

undergoing surgery under University of North Carolina Institu-

tional Review Board-approved protocols by the Cystic Fibrosis

Center Tissue Culture Core.

Infections
For influenza virus, Calu3 infections and sample preparation for

transcriptomics of VN1203 and NL602 are described in detail in

[17]. Data from these experiments was published previously [17].

CA04 infection and sample collections were performed exactly as

described for NL602. Briefly, Calu3 cells were infected with

VN1203 at multiplicity of infection (MOI) of 1 for 0, 3, 7, 12, 18,

and 24 h or CA04 or NL602 at MOI of 3 for 0, 3, 7, 12, 18, 24,

30, 36, and 48 h.

For SARS-CoV, infections were performed in either Calu3 2B4

cells, a clonal population of Calu3 cells (human lung adenocar-

cinoma) sorted for high levels of expression of the SARS-CoV

cellular receptor, angiotensin converting enzyme 2 (ACE2) [48], or

in human primary tracheobronchial epithelial cell cultures. Calu3

2B4 cells were grown in minimal essential media (MEM)

(Invitrogen-Gibco) containing 20% fetal bovine serum (Hyclone)

and 1% antibiotic anti-mycotic (Invitrogen-Gibco). Viral titration

assays were performed in VeroE6 cells. VeroE6 cells were

maintained in MEM (Invitrogen-Gibco) containing 10% Fetal

Clone II (Hyclone) and 1% antibiotic anti-mycotic (Invitrogen-

Gibco).

Human airway epithelium cultures (HAE) were generated by

provision of an air-liquid interface for 6 to 8 weeks to form well-

differentiated, polarized cultures that resemble in vivo pseudo-

stratified mucociliary epithelium [35].
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Wild type infectious clone derived SARS-CoV (icSARS-CoV),

icSARS-CoV DORF6 and Bat-SRBD were derived from the Baric

laboratory’s infectious clone constructs as previously described

[12,15,16]. Briefly, genome fragments were amplified in E. coli,

ligated, and purified prior to in vitro transcription reactions to

synthesize full length genomic RNA which were transfected into

VeroE6 cells. All work was performed in a BSL3 facility supported

by redundant fans. Research staff wore tyvek suits, gloves, aprons

and booties and portable air breathing apparatus (PAPR) as

specified by the manufacturer (3M).

For infections of Calu3 2B4 cells, the cells were plated in

triplicate for each condition at each time point, washed prior to

infection, infected with MOI of 5 (meaning 5 infectious virus

particles per cell) for icSARS-CoV DORF6 or 1 for Bat-SRBD

(each with wild type icSARS-CoV at the specified MOI) and

incubated at 37uC for 40 minutes. The inoculum was then

removed, cells were washed 3 times with 1XPBS, and then fresh

media added prior to time 0. For both microarray and proteomics

analysis, at 0, 3, 7, 12, 24, 30, 36, 48, 54, 60, and 72 hours post

infection, media was collected to determine viral titers at each time

point for each well and cells were either washed in 1XPBS, and

then harvested in TRIzol (Invitrogen) and stored at -80uC (RNA)

or washed 3 times in cold 150 mM ammonium bicarbonate

buffer, lysed for 15 minutes in 8M urea and stored at 280C

(protein). Infection of HAE cultures with icSARS-CoV, icSARS-

CoV DORF6, and Bat-SRBD was performed as previously

described [33,49,50]. Briefly, triplicate cultures were washed with

1XPBS and 200uL of mock, icSARS-CoV, icSARS-CoV DORF6

or Bat-SRBD inoculum (MOI 2) added to the apical surface.

Cultures were incubated at 37uC for 2 hours, the inoculum

removed and unbound viruses removed by washing three times

with 1X PBS. Apical wash samples were harvested to analyze viral

growth kinetics at 0, 12, 24, 36, 48, 60, 72, and 96 hours post

infection and were assayed by plaque assay in Vero E6 cells [33].

Total RNA was harvested by washing the apical and basolateral

surfaces of the cultures with 1XPBS and then adding 500uL of

TRIzol to the apical surface, incubating for 5 minutes and

transferring to a fresh tube. Samples were then frozen at 280C

until being sent for processing.

Proteomics
Detailed proteomics methodology, including sample prepara-

tion, processing and analysis, are provided in Supporting

Information S1. Calu3 cells lysates were trypsin digested and

fractionated by strong cation exchange (SCX) as previously

described [51,52]. A novel accurate mass and time (AMT) tag

database [53] was generated for each sample type by LC-MS/MS

analysis [51,54] of each SCX fraction and LC-MS analyses were

subsequently performed on each individual unfractionated sample

to generate quantitative data using identical chromatographic and

electrospray conditions as for LC-MS/MS analyses. For quanti-

tative analyses, the LC system was interfaced to an Exactive mass

spectrometer (Thermo Scientific), and the temperature of the

heated capillary and the ESI voltage were 250uC and 2.2 kV,

respectively. Data were collected over the mass range 400–

2,000 m/z. Quantitative LC-MS datasets were processed using the

PRISM Data Analysis system [55], which is a series of software

tools developed in-house (e.g. Decon2LS [56] and VIPER [57]

freely available at http://ncrr.pnl.gov/software/). Individual steps

in this data processing approach are reviewed here [53]. The peak

intensity values (i.e. abundances) for the final peptide identifica-

tions were processed in a series of steps using MatLabH R2010b,

including quality control [58], normalization [59], and quantifi-

cation to protein level [60]. Comparative statistical analyses of

time-matched mock samples with infected samples per sample type

were performed using a Dunnett adjusted t-test to assess

differences in protein average abundance, and a G-test to assess

associations among factors due to the presence/absence of

response [61].

Microarrays
RNA isolation, array hybridization, signal processing, normal-

ization and QC filtering was performed as described in [17].

Briefly, RNA was isolated from infected cells, quantified, and

hybridized to Agilent 4644K human HG arrays. Raw data

extracted from image analysis were background corrected and

normalized with quantile normalization.

Compendia
We made compendia of all data for each virus type, such that

data from all HP and LP strains were included. Data were

included for each probe where at least one time point demon-

strated differential expression with respect to time-matched mocks,

using the criteria of a minimum fold change of 2.0 and maximum

FDR-corrected p-value of 0.05. Compendia were assembled for

transcriptome and proteome datasets. To deal with missing values

in proteome data, a conservative approach was adapted, in which

the missing values of a given experimental condition were filled in

with the average value for the replicates present for that condition,

only if at least half of the replicates were present in that condition.

Proteins for which one or more conditions showed more than half

missing values were discarded.

Network Inference
Compendia were used as input to the Context Likelihood of

Relatedness (CLR) software [3], which uses assessment of mutual

information to generate a matrix representing the pairwise

relationships between all genes. CLR runs were set with

parameters: bins = 10; spline = 3. To determine an appropriate

CLR cutoff value for incorporation of a gene vertex into the

inferred network, we generated influenza networks using multiple

cutoffs, calculated betweenness for all vertices in each network,

and used several functional gene lists [23–29] to test the top-

scoring genes for functional enrichment. A CLR threshold of 2.0

was chosen to generate all subsequent networks.

Edge Validation
Transcription factor/target pairs were taken from msigdb

subgroup C3:TFT, downloaded from http://www.broadinstitute.

org/gsea/msigdb/collections.jsp. All network edges were com-

pared to the database edges to determine overlap, similar to [3].

To determine the background levels of accidental edge inference,

one of the parent vertex columns in each network edge file was

scrambled, thus generating a random network based on the same

number of vertices and edges. These new edges were then

compared with the database edges, and the permutation process

was repeated 1000 times. P-values were calculated from z-scores

derived from the size of database overlap, and the mean and

standard deviation of the overlaps of random networks with the

database.

Based on a dataset of 400 different transcriptome profiles of

HUVEC having been knocked down by siRNA transfection [19]

available on the NCBI-GEO database via the ascension number

GSE27871, we identified the list of significant differentially

expressed genes (fold-change$1.5, p,0.05) compare to a control

condition (‘‘TNFa untreated’’ condition) for each knocked-down

condition. Moreover, for each gene identified in the influenza or
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SARS inferred co-expression networks for which a knocked-down

profile was available, we identified the list of adjacent genes in the

inferred network. Then a p-value representing the statistical

significance of the overlap between the differentially expressed

genes identified based on the knocked down profiles and the

network neighbors was calculated using the right-tailed Fisher’s

exact test. P-values under.01 were counted as significant. For both

the influenza and SARS-CoV networks, we generated 500

random networks having the same topological structure by

randomly permuting the vertices but by keeping the edges fixed.

For each generated random network, we performed the same

overlap test with the HUVEC dataset as before. Final p-values (in

figure 3B) were obtained from z-scores derived by comparing the

actual percentage of genes that showed significant overlap with the

distribution of percentages obtained using random networks.

Differential Expression Ranking
To establish a ranking for genes highly differentially expressed

between HP and LP, we used the difference between the

expression levels of HP and LP at each time point. (Log2

experimental:mock ratios were used for initial compendia

construction.) For the SARS-CoV data, we took the DORF6

mutant and the bat SRBD strain as LP for comparison with HP

wild type SARS-CoV. We used ANOVA and the Tukey’s test to

determine which of the differences between HP and LP strains

were significant. The absolute value of the difference at each

significant time point was summed for each gene yielding a DE

score:

DE~
Xn

i~1

abs(S1i)z
Xn

i~1

abs(S2i):

where S1 is the set of differences between HP and LP strains at

time points where the difference was statistically significant in

DORF6, and S2 is the similar set of values for bat SRBD. For

influenza, we used the VN1203 data as HP, and the Ca04 and

NL602 strains as LP. In contrast to the SARS-CoV experiments

which were performed with wild type virus alongside mutants

within each experiment, influenza strains were all used in separate

experiments, thus making determination of fold change signifi-

cance between strains problematic. We therefore simply took the

sum of the absolute value of the HP and LP differences at all time

points for each gene.

With this approach, the DE behavior of each gene is collapsed

into a single value for all temporal stages of the infection process.

Since a large number of genes show a response to influenza virus

infection in the first 12 hours, we only included these time points in

the DE ranking to avoid incorporation of secondary regulatory

effects in our analysis. This time point-specific ranking was not

performed for the SARS-CoV data, since SARS-CoV infected

cells do not show the same early response, and no obvious

demarcation between early and late gene expression is evident.

Combined Rankings
We combined topological rankings and DE scores for each gene

into a single prioritization score. This was done by converting each

score into a ranking based on its position in a sorted list of rankings

for all genes, then using the equivalent quantiles to find an

average:

overall prioritization score~
1{ DE rank

#genes

� �
z 1{ betw: rank

#genes

� �

2

A similar procedure was followed to combine three rankings into

one composite ranking.

Network Integration
Proteome vertices of edge file entries (from CLR-derived

proteome networks, see above) were converted to probe IDs using

the biomaRt package in R. For complete integration, converted

proteome edge entries were simply added to transcriptome edge

entries. These new combined edge files were used to build

integrated networks; all vertices in the networks were then assessed

for betweenness and degree centrality. For conservative integra-

tion, converted proteome edges were identified for which both

parent vertices existed in the transcriptome network, but no edge

between them existed. These edges were then combined with the

transcriptome edges and all other proteome edges were discarded.

GSEA-based Ranking Assessment
The ‘‘GSEA preranked’’ setting in the GSEA software was used

to determine enrichment of gene sets at the top and bottom of a

preranked list of genes [30]. Either the custom set of 7 influenza-

related gene sets, or the set of msigdb gene set names with a match

to the words ‘‘viral’’ or ‘‘virus’’ was used as the reference gene set

collection. The FDR corrected enrichment significance values

were converted to 21* log10, and these values were averaged over

all gene sets, resulted in an overall enrichment score. Enrichment

scores were compared to 100 enrichment scores of scrambled

rankings of the same genes to obtain p-values using the z-test. P-

values were calculated from z-scores derived from the enrichment

score, and the mean and standard deviation of 100 enrichment

scores of scrambled rankings.

Bootstrap GSEA Ranking Calculation
A bootstrap approach was used to identify significant differences

between individual GSEA enrichment scores resulting from the

above method. Each ranked list of genes was resampled with

replacement; this new ranking was equivalent to the original but

contained a random subset of the original genes with their

respective rankings. The new ranking was then assessed for GSEA-

based enrichment as described above. The distribution of

enrichment scores derived from 100 iterations of this process

was compared to distributions from other rankings derived in the

same way. Standard ANOVA and post-hoc tests were used to

determine which, if any, of the enrichment scores of the original

rankings were statistically different from each other.

Inferelator-based Modeling
The Inferelator software (May 2008, version 1.2) was used to

infer critical regulatory influences in our datasets. Required input

to the program includes sets of candidate regulators and regulatory

targets. Genes known to function as transcription factors (all

mouse genes with the GO annotation ‘‘transcription factor

activity’’; acquired from http://www.informatics.jax.org/) were

provided as regulators to the Inferelator software [32]. To ensure

that a rich selection of candidate regulators was available for

modeling, the top 500 ranked genes from the betweenness/

degree/DE combined ranking were chosen as additional SARS-

CoV regulators, and the top 500 ranked genes from the

betweenness/degree were chosen as additional influenza virus

regulators. For regulatory targets, merged proteome/transcrip-

tome network from both viruses were used to derive adjacency

matrices, which were subsequently used for hierarchical clustering

using Ward’s minimum variance method [62]. The average

expression profiles of these clusters were used as the regulatory
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targets. Number of clusters was determined by running the

Inferelator with cluster levels from 5 to 50, and the cluster level at

which the predictive model could best replicate the observed data

was chosen as the optimal cluster level (28 clusters for SARS-CoV,

30 for influenza virus). Inferelator was run with the max.inter.-

corr.cutoff parameter set to 21, so as to prevent calculation of the

effect of dimeric regulators.

Model System Comparison
Inferelator models derived from SARS-CoV and influenza

virus-infected Calu3 datasets were compared to the observed

expression levels in SARS-CoV–infected HAE cells and influenza

virus-infected mice, respectively as described in [18]. To

summarize, the cluster expression levels in the HAE and mouse

systems were predicted using the assigned regulatory weights of the

Inferelator models from Calu3 and the regulator expression levels

from the non-Calu3 data. To improve the comparability of the

mouse dataset, only days 1 and 2 post-infection were used in the

comparison, despite data from days 4 and 7 being also present. In

this way we determined the applicability of regulatory influences in

Calu3 to other systems. Individual genes were ranked by their

cross-prediction (Xpred) score [18] to prioritize genes with high

correlations in both the relationship between the predicted

regulatory mechanisms in the Calu3 model and the target model

(HAE or mouse), and between each gene and its parent clusters

overall behavior.

Data Dissemination
Raw microarray data have been deposited in NCBI’s Gene

Expression Omnibus [63] and are accessible through Gene

Expression Omnibus (GEO) SuperSeries accession GSE47963

(http://www.ncbi.nlm.nih.gov/geo/query/acc.

cgi?acc = GSE47963), as well as SubSeries accessions GSE47960

(http://www.ncbi.nlm.nih.gov/geo/query/acc.

cgi?acc = GSE47960), GSE47961 (http://www.ncbi.nlm.nih.gov/

geo/query/acc.cgi?acc = GSE47961), and GSE47962 (http://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc = GSE47962).

Raw proteomics data corresponding to peptide identifications used

to populate the AMT tag database are available at the PRoteomics

IDEntification (PRIDE) database (http://www.ebi.ac.uk/pride/)

under the project name A Systems Biology Approach to Emerging

Respiratory Viral Diseases in the PRIDE Public Projects folder

and corresponding to PRIDE Accession numbers 19878 (H5N1)

19877–19890. The raw quantitative proteomics data can be

accessed at the PNNL Biological MS Data and Software

Distribution Center (http://omics.pnl.gov/) in the Systems

Virology Contract Data folder within the Browse Available Data

folder. All data sets and associated metadata have been submitted

to Virus Pathogen Resource (ViPR, http://www.viprbrc.org).

Additional details from this study and similar studies can be

accessed through the Systems Virology website (http://www.

systemsvirology.org). If these data are used in additional

publications please acknowledge the Systems Virology Center,

NIAID Contract No. HHSN272200800060C.

Supporting Information

Figure S1 Placement of proteome vertices in ranked
betweenness lists. All vertices in the integrated network were

ordered according to betweenness score, and vertices originating

from proteome data were identified. Placement of proteome

vertices in the betweenness ranking was indicated using a

histogram. Top panels represent complete incorporation of

proteome vertices, while bottom panels represent integration

using the conservative approach (see text and Figure S2).

(TIF)

Figure S2 Schematic illustrating conservative integra-
tion of proteome edges into transcriptome network. To

avoid spurious network structure, only proteome edges are merged

into the transcriptome network for which both parent vertices are

already present in the transcriptome network. This causes changes

in the network structure altering the betweenness score for some

genes (depicted at left).

(TIF)

Figure S3 Individual enrichment scores for each of the 7
gene sets used to evaluate influenza rankings. Colors

indicate the individual enrichment scores for each influenza gene

ranking with each influenza-related gene list.

(TIF)

Figure S4 Individual enrichment scores for general
gene sets used to evaluate SARS-CoV rankings. Colors

indicate enrichment scores of each SARS-CoV ranking for 299

gene sets from diverse categories obtained from msigdb. Gene set

sub-categories are indicated on the right.

(TIF)

Figure S5 Limited CLR network of connections to
CREB5, #1 on the list of predicted regulators for
SARS-CoV (Table 2). Targeted node is colored red, primary

neighbors are colored dark pink, secondary neighbors are colored

light pink.

(JPG)

Figure S6 Limited CLR network of connections to
DUSP8, #2 on the list of predicted regulators for
SARS-CoV (Table 2). Nodes are colored as in Figure S5.

(JPG)

Figure S7 Limited CLR network of connections to
NFKBIA, #3 on the list of predicted regulators for
SARS-CoV (Table 2). Nodes are colored as in Figure S5.

(JPG)

Figure S8 Limited CLR network of connections to
PCGF5, #2 on the list of predicted regulators for
Influenza virus (Table 3). Nodes are colored as in Figure S5.

(JPG)

Figure S9 Limited CLR network of connections to
NFE2L3, #3 on the list of predicted regulators for
Influenza virus (Table 3). Nodes are colored as in Figure S5.

(JPG)

Figure S10 Limited CLR network of connections to HLA-
E, #5 on the list of predicted regulators for Influenza
virus (Table 3). Nodes are colored as in Figure S5.

(JPG)

Supporting Information S1.

(DOC)

Table S1 Combined SARS-CoV ranking. Ranking of genes

for the SARS-CoV analysis based on the combined ranking of

betweenness, degree centrality and differential expression between

pathogenicity levels. Corresponds to step #2 in Figure 2. High

ranked genes are referred to as candidate regulators. Columns

contain various identifiers as indicated.

(ZIP)

Table S2 Combined influenza virus ranking. Ranking of

genes for the influenza virus analysis based on the combined

Prediction of Respiratory Virus Regulators

PLOS ONE | www.plosone.org 14 July 2013 | Volume 8 | Issue 7 | e69374



ranking of betweenness and degree centrality. Corresponds to step

#2 in Figure 2. High ranked genes are referred to as candidate

regulators. Columns contain various identifiers as indicated.

(ZIP)

Table S3 Conservation ranking for SARS-CoV. Conser-

vation ranking based on agreement of regulatory model inferred in

SARS-CoV infected Calu3 with data from SARS-CoV infection

of human primary airway epithelium. Xpred is defined in [18].

Remaining columns contain various identifiers as indicated.

(ZIP)

Table S4 Conservation ranking for influenza virus.
Conservation ranking based on agreement of regulatory model

inferred in influenza virus infected Calu3 with data from influenza

virus infection of mice. Xpred is defined in [18]. Remaining

columns contain various identifiers as indicated.

(ZIP)
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