18 research outputs found

    Exploring optically dark and dim gamma-ray bursts: instrumentation, observation and analysis

    Get PDF
    For the past decade, after the first afterglows of gamma-ray bursts (GRBs) were observed, astronomers have puzzled over the question of why some bursts have bright optical afterglows, while others have no detected emission at all, despite quick, deep searches. The source of the darkness can reveal specific clues to the nature of the progenitor and its local environment, or hint at global information pertaining to star-formation rates or the early universe itself, for example. Astronomers have identified possible causes of dark afterglows: (1) the burst lies at high redshift, (2) the burst is extinguished by dust in the host galaxy, (3) the burst occurred in a low-density region, or (4) the intrinsic light from the burst is dim due to microphysical parameters of the shock. We present a two-pronged approach to understand the nature of dark and dim bursts. First, we detail the results of a large observing campaign designed to seek out and observe the optical and near-infrared afterglows of gamma-ray bursts in order to establish which are dark or dim. Secondly, we present PROMPT (Panchromatic Robotic Optical Monitoring and Polarimetry Telescopes), whose unique design allows it to identify afterglows that are highly reddened due to redshift and dust. PROMPT responds automatically to satellite notification, only tens of seconds after a GRB occurs, and can observe afterglows when they are at their brightest to discover dim afterglows that may have been missed with observations at later time. As proof of concept, I present a first look at the success of PROMPT's first year of operations and the eight rapid-time responses it made

    The Rapidly Flaring Afterglow of the Very Bright and Energetic GRB 070125

    Get PDF
    We report on multiwavelength observations, ranging from X-ray to radio wave bands, of the IPN-localized gamma-ray burst GRB 070125. Spectroscopic observations reveal the presence of absorption lines due to O i,Si ii,and C iv, implying a likely redshift of z ¼1:547. The well-sampled light curves, in particular from 0.5 to 4 days after the burst, suggest a jet break at 3.7 days, corresponding to a jet opening angle of 7.0,andimplyinganintrinsicGRBenergyinthe1Y10,000keVbandofaroundE¼(6:3Y6:9);1051ergs(basedonthefluencesmeasuredbythegamma−rayde−tectorsoftheIPN).GRB070125isamongthebrightestafterglowsobservedtodate.TheSEDimpliesahostextinctionofAV3˘c0:9mag.Tworebrighteningepisodesareobserved,onewithexcellenttimecoverage,showinganincreaseinfluxof567.0, and implying an intrinsic GRB energy in the 1Y10,000 keV band of around E ¼(6:3Y6:9) ; 1051 ergs (based on the fluences measured by the gamma-ray de-tectorsof the IPN).GRB070125 is among the brightest afterglows observed to date.The SEDimplies ahostextinction of AV \u3c 0:9 mag. Two rebrightening episodes are observed, one with excellent time coverage, showing an increase in fluxof 56% in 8000 s.The evolution of the afterglow light curve is achromatic at all times.Late-time observationsof the afterglow do not show evidence for emission from an underlying host galaxy or supernova. Any host galaxy would be subluminous, consistent with current GRB host galaxy samples. Evidence for strong Mg ii absorption features is not found, which is perhaps surprising in view of the relatively high redshift of this burst and the high likelihood for such features along GRB-selected lines of sight

    Optical Time-Series Photometry of the Symbiotic Nova V1835 Aquilae

    Full text link
    We present time-series CCD photometry in the BVRIBVRI passbands of the recently identified symbiotic nova V1835 Aquilae (NSV 11749) over an interval of 5.1 years with 7-14 day cadence, observed during its quiescence. We find slow light variations with a range of ∼\sim0.9 mag in VV and ∼\sim0.3 mag in II. Analysis of these data show strong periodicity at 419±10419 \pm 10 days, which we interpret to be the system's orbital period. A dip in the otherwise-sinusoidal phased light curve suggests a weak ellipsoidal effect due to tidal distortion of the giant star, which in turn opens the possibility that V1835 Aql transfers some of its mass to the hot component via Roche lobe overflow rather than via a stellar wind. We also find evidence that V1835 Aql is an S-type symbiotic star, relatively free of circumstellar dust, and include it among the nuclear burning group of symbiotics. Finally, we provide photometry, periods, and light curve classifications for 22 variable stars in the field around V1835 Aql, about half of which are newly identified.Comment: Main Paper: 28 pages, 5 figures, 5 tables. Supplement: 15 pages, 4 figures, 1 table. To be published in Publications of the Astronomical Society of the Pacifi

    NGC 3576 and NGC 3603: Two Luminous Southern HII Regions Observed at High Resolution with the Australia Telescope Compact Array

    Get PDF
    NGC 3576 (G291.28-0.71; l=291.3o, b=-0.7o) and NGC 3603 (G291.58-0.43; l=291.6o, b=-0.5o) are optically visible, luminous HII regions located at distances of 3.0 kpc and 6.1 kpc, respectively. We present 3.4 cm Australian Telescope Compact Array (ATCA) observations of these two sources in the continuum and the H90a, He90a, C90a and H113b recombination lines with an angular resolution of 7" and a velocity resolution of 2.6 km/s. All four recombination lines are detected in the integrated profiles of the two sources. Broad radio recombination lines are detected in both NGC 3576 (DV_{FWHM}>= 50 km/s) and NGC 3603 (DV_{FWHM}>=70 km/s). In NGC 3576 a prominent N-S velocity gradient (~30 km/s/pc) is observed, and a clear temperature gradient (6000 K to 8000 K) is found from east to west, consistent with a known IR color gradient in the source. In NGC 3603, the H90a, He90a and the H113b lines are detected from 13 individual sources. The Y^+ (He/H) ratios in the two sources range from 0.08+/-0.04 to 0.26+/-0.10. We compare the morphology and kinematics of the ionized gas at 3.4 cm with the distribution of stars, 10 micron emission and H_2O, OH, and CH_3OH maser emission. These comparisons suggest that both NGC 3576 and NGC 3603 have undergone sequential star formation.Comment: 24 pages, 12 Postscript figure

    The Rapidly Flaring Afterglow of the Very Bright and Energetic GRB 070125

    Get PDF
    We report on multiwavelength observations, ranging from X-ray to radio wave bands, of the IPN-localized gamma-ray burst GRB 070125. Spectroscopic observations reveal the presence of absorption lines due to O I, Si II, and C IV, implying a likely redshift of z = 1.547. The well-sampled light curves, in particular from 0.5 to 4 days after the burst, suggest a jet break at 3.7 days, corresponding to a jet opening angle of ~7.0°, and implying an intrinsic GRB energy in the 1-10,000 keV band of around Eγ = (6.3–6.9) × 1051 ergs (based on the fluences measured by the gamma-ray detectors of the IPN). GRB 070125 is among the brightest afterglows observed to date. The SED implies a host extinction of AV \u3c 0.9 mag . Two rebrightening episodes are observed, one with excellent time coverage, showing an increase in flux of 56% in ~8000 s. The evolution of the afterglow light curve is achromatic at all times. Late-time observations of the afterglow do not show evidence for emission from an underlying host galaxy or supernova. Any host galaxy would be subluminous, consistent with current GRB host galaxy samples. Evidence for strong Mg II absorption features is not found, which is perhaps surprising in view of the relatively high redshift of this burst and the high likelihood for such features along GRB-selected lines of sight

    Photometric Observations of Three High Mass X-Ray Binaries and a Search for Variations Induced by Orbital Motion

    Full text link
    We searched for long period variation in V-band, Ic-band and RXTE X-ray light curves of the High Mass X-ray Binaries (HMXBs) LS 1698 / RX J1037.5-5647, HD 110432 / 1H 1249-637 and HD 161103 / RX J1744.7-2713 in an attempt to discover orbitally induced variation. Data were obtained primarily from the ASAS database and were supplemented by shorter term observations made with the 24- and 40-inch ANU telescopes and one of the robotic PROMPT telescopes. Fourier periodograms suggested the existence of long period variation in the V-band light curves of all three HMXBs, however folding the data at those periods did not reveal convincing periodic variation. At this point we cannot rule out the existence of long term V-band variation for these three sources and hints of longer term variation may be seen in the higher precision PROMPT data. Long term V-band observations, on the order of several years, taken at a frequency of at least once per week and with a precision of 0.01 mag, therefore still have a chance of revealing long term variation in these three HMXBs.Comment: Accepted, RAA, May, 201

    SN 2009bb: a Peculiar Broad-Lined Type Ic Supernova

    Get PDF
    Ultraviolet, optical, and near-infrared photometry and optical spectroscopy of the broad-lined Type Ic supernova (SN) 2009bb are presented, following the flux evolution from -10 to +285 days past B-band maximum. Thanks to the very early discovery, it is possible to place tight constraints on the SN explosion epoch. The expansion velocities measured from near maximum spectra are found to be only slightly smaller than those measured from spectra of the prototype broad-lined SN 1998bw associated with GRB 980425. Fitting an analytical model to the pseudo-bolometric light curve of SN 2009bb suggests that 4.1+-1.9 Msun of material was ejected with 0.22 +-0.06 Msun of it being 56Ni. The resulting kinetic energy is 1.8+-0.7x10^52 erg. This, together with an absolute peak magnitude of MB=-18.36+-0.44, places SN 2009bb on the energetic and luminous end of the broad-lined Type Ic (SN Ic) sequence. Detection of helium in the early time optical spectra accompanied with strong radio emission, and high metallicity of its environment makes SN 2009bb a peculiar object. Similar to the case for GRBs, we find that the bulk explosion parameters of SN 2009bb cannot account for the copious energy coupled to relativistic ejecta, and conclude that another energy reservoir (a central engine) is required to power the radio emission. Nevertheless, the analysis of the SN 2009bb nebular spectrum suggests that the failed GRB detection is not imputable to a large angle between the line-of-sight and the GRB beamed radiation. Therefore, if a GRB was produced during the SN 2009bb explosion, it was below the threshold of the current generation of gamma-ray instruments.Comment: Accepted for publication in Ap

    The Rapidly Flaring Afterglow of the Very Bright and Energetic GRB 070125

    Get PDF
    We report on multi-wavelength observations, ranging from the X-ray to radio wave bands, of the IPN-localized gamma-ray burst GRB 070125. Spectroscopic observations reveal the presence of absorption lines due to O I, Si II, and C IV, implying a likely redshift of z = 1.547. The well-sampled light curves, in particular from 0.5 to 4 days after the burst, suggest a jet break at 3.7 days, corresponding to a jet opening angle of ~7.0 degrees, and implying an intrinsic GRB energy in the 1 - 10,000 keV band of around E = (6.3 - 6.9)x 10^(51) erg (based on the fluences measured by the gamma-ray detectors of the IPN network). GRB 070125 is among the brightest afterglows observed to date. The spectral energy distribution implies a host extinction of Av < 0.9 mag. Two rebrightening episodes are observed, one with excellent time coverage, showing an increase in flux of 56% in ~8000 seconds. The evolution of the afterglow light curve is achromatic at all times. Late-time observations of the afterglow do not show evidence for emission from an underlying host galaxy or supernova. Any host galaxy would be subluminous, consistent with current GRB host-galaxy samples. Evidence for strong Mg II absorption features is not found, which is perhaps surprising in view of the relatively high redshift of this burst and the high likelihood for such features along GRB-selected lines of sight.Comment: 50 pages, 9 figures, 5 tables Accepted to the Astrophysical Journa

    Ultraviolet Study of the Active Interacting Binary Star R Arae using Archival IUE Data

    Get PDF
    The eclipsing and strongly interacting binary star system R Arae (HD149730) is in a very active and very short-lived stage of its evolution. R Ara consists of a B9V primary and an unknown secondary. We have collected the International Ultraviolet Explorer (IUE) archival data on R Ara, with most of the data being studied for the first time. There are 117 high resolution IUE spectra taken in 1980, 1982, 1985, 1989, and 1991. We provide photometric and spectroscopic evidence for mass transfer and propose a geometry for the accretion structure. We use colour scale radial velocity plots to view the complicated behavior of the blended absorption features and to distinguish the motions of hotter and cooler regions within the system. We observed a primary eclipse of R Ara in 2008 and have verified that its period is increasing. A model of the system and its evolutionary status is presented.Comment: 13 pages, 15 figures, accepted for publication in MNRA
    corecore