58 research outputs found

    National Assessment of the Potential Consequences of Climate Variability and Change for the United States

    Get PDF
    The first U.S. National Assessment of the PotentialConsequences of Climate Variability and Change for theUnited States is being conducted under the auspices of theU.S. Global Change Research Program (USGCRP). TheUSGCRP was established through the Global ChangeResearch Act of 1990 (P.L. 101-606) and mandatedthrough the statute with the responsibility to undertakeperiodic scientific assessments of the potentialconsequences of global change for the United States. Thegoal of the National Assessment is to analyze andevaluate what is known about the potential consequencesof climate variability and change for the nation in thecontext of other pressures on the public, the environment,and the nation\u27s resources. The conduct of the nationalassessment process will involve a broad spectrum ofstakeholders from state, local, tribal, and Federalgovernments; business; labor; academia; non-profitorganizations; and the general public. The assessmentwill link research by scientists to specific needs of thestakeholders, and will provide planners, managers,organizations, and the public with the information neededto increase resilience to climate variability and cope withclimate change. The national assessment will becomprised of three components: (1) National synthesis,(2) Sectoral analyses (agriculture, forestry, waterresources, human health, and the coastal zone), and(3) Regional analyses. To facilitate comparison,integration, and synthesis of each of the assessmentcomponents, all regional, sectoral, and synthesis analyseswill use a common set of scenarios for climate change and changes in socio-economic conditions. Specific responsibilities have been defined for oversight of the components of the national assessment and forcoordination activities. A National Assessment SynthesisTeam (NAST) will provide overall intellectual oversightof the national assessment process and has responsibilityfor the development of the Synthesis Report. A NationalAssessment Working Group under the auspices of theUSGCRP has lead responsibility for organizing andsponsoring the sectoral analyses and oversight andcoordination responsibilities for regional analyses. ANational Assessment Coordination Office has beenestablished to facilitate coordination of the entire nationalassessment process. The National Assessment SynthesisReport is targeted for completion by January 1, 2000, andis intended to satisfy the mandate for an assessmentdefined in P.L. 101-606 and serve as part of the U.S.contribution to the IPCC Third Assessment Report

    Predicting the effects of climate change on water yield and forest production in the northeastern United States

    Get PDF
    Rapid and simultaneous changes in temperature, precipitation and the atmospheric concentration of CO2 are predicted to occur over the next century. Simple, well-validated models of ecosystem function are required to predict the effects of these changes. This paper describes an improved version of a forest carbon and water balance model (PnET-II) and the application of the model to predict stand- and regional-level effects of changes in temperature, precipitation and atmospheric CO2 concentration. PnET-II is a simple, generalized, monthly time-step model of water and carbon balances (gross and net) driven by nitrogen availability as expressed through foliar N concentration. Improvements from the original model include a complete carbon balance and improvements in the prediction of canopy phenology, as well as in the computation of canopy structure and photosynthesis. The model was parameterized and run for 4 forest/site combinations and validated against available data for water yield, gross and net carbon exchange and biomass production. The validation exercise suggests that the determination of actual water availability to stands and the occurrence or non-occurrence of soil-based water stress are critical to accurate modeling of forest net primary production (NPP) and net ecosystem production (NEP). The model was then run for the entire NewEngland/New York (USA) region using a 1 km resolution geographic information system. Predicted long-term NEP ranged from -85 to +275 g C m-2 yr-1 for the 4 forest/site combinations, and from -150 to 350 g C m-2 yr-1 for the region, with a regional average of 76 g C m-2 yr-1. A combination of increased temperature (+6*C), decreased precipitation (-15%) and increased water use efficiency (2x, due to doubling of CO2) resulted generally in increases in NPP and decreases in water yield over the region

    Quantifying Climate Feedbacks from Abrupt Changes in High-Latitude Trace-Gas Emissions

    Get PDF
    Our overall goal was to quantify the potential for threshold changes in natural emission rates of trace gases, particularly methane and carbon dioxide, from pan-arctic terrestrial systems under the spectrum of anthropogenically forced climate warming, and the extent to which these emissions provide a strong feedback mechanism to global climate warming. This goal is motivated under the premise that polar amplification of global climate warming will induce widespread thaw and degradation of the permafrost, and would thus cause substantial changes in the extent of wetlands and lakes, especially thermokarst (thaw) lakes, over the Arctic. Through a coordinated effort of field measurements, model development, and numerical experimentation with an integrated assessment model framework, we have investigated the following hypothesis: There exists a climate-warming threshold beyond which permafrost degradation becomes widespread and thus instigates strong and/or sharp increases in methane emissions (via thermokarst lakes and wetland expansion). These would outweigh any increased uptake of carbon (e.g. from peatlands) and would result in a strong, positive feedback to global climate warming

    Terrestrial organic carbon storage in a British moorland

    Get PDF
    Accurate estimates for the size of terrestrial organic carbon (C) stores are needed to determine their importance in regulating atmospheric CO2 concentrations. The C stored in vegetation and soil components of a British moorland was evaluated in order to: (i) investigate the importance of these ecosystems for C storage and (ii) test the accuracy of the United Kingdom's terrestrial C inventory. The area of vegetation and soil types was determined using existing digitized maps and a Geographical Information System (GIS). The importance of evaluating C storage using 2D area projections, as opposed to true surface areas, was investigated and found to be largely insignificant. Vegetation C storage was estimated from published results of productivity studies at the site supplemented by field sampling to evaluate soil C storage. Vegetation was found to be much less important for C storage than soil, with peat soils, particularly Blanket bog, containing the greatest amounts of C. Whilst the total amount of C in vegetation was similar to the UK national C inventory's estimate for the same area, the national inventory estimate for soil C was over three times higher than the value derived in the current study. Because the UK's C inventory can be considered relatively accurate compared to many others, the results imply that current estimates for soil C storage, at national and global scales, should be treated with caution

    Understanding Climatic Impacts, Vulnerabilities, and Adaptation in the United States: Building a Capacity for Assessment

    Get PDF
    Based on the experience of the U.S. National Assessment, we propose a program of research and analysis to advance capability for assessment of climate impacts, vulnerabilities, and adaptation options. We identify specific priorities for scientific research on the responses of ecological and socioeconomic systems to climate and other stresses; for improvement in the climatic inputs to impact assessments; and for further development of assessment methods to improve their practical utility to decision-makers. Finally, we propose a new institutional model for assessment, based principally on regional efforts that integrate observations, research, data, applications, and assessment on climate and linked environmental-change issues. The proposed program will require effective collaboration between scientists, resource managers, and other stakeholders, all of whose expertise is needed to define and prioritize key regional issues, characterize relevant uncertainties, and assess potential responses. While both scientifically and organizationally challenging, such an integrated program holds the best promise of advancing our capacity to manage resources and the economy adaptively under a changing climate

    Safety and Efficacy of Durvalumab With or Without Tremelimumab in Patients With PD-L1-Low/Negative Recurrent or Metastatic HNSCC The Phase 2 CONDOR Randomized Clinical Trial

    Get PDF
    IMPORTANCE: Dual blockade of programmed death ligand 1(PD-L1) and cytotoxic T-lymphocyte associated protein 4 (CTLA-4) may overcome immune checkpoint inhibition. It is unknown whether dual blockade can potentiate antitumor activity without compromising safety in patients with recurrent or metastatic head and neck squamous cell carcinoma (R/M HNSCC) and low or no PD-L1 tumor cell expression. OBJECTIVE :To assess safety and objective response rate of durvalumab combined with tremelimumab. DESIGN, SETTING, AND PARTICIPANTS: The CONDOR study was a phase 2, randomized, open-label study of Durvalumab, Tremelimumab, and Durvalumab in Combination With Tremelimumab in Patients With R/M HNSCC. Eligibility criteria included PD-L1-low/negative disease that had progressed after 1 platinum-containing regimen in the R/M setting. Patients were randomized (N = 267) from April 15, 2015, to March 16, 2016, at 127 sites in North America, Europe, and Asia Pacific. INTERVENTIONS: Durvalumab (20 mg/kg every 4 weeks) + tremelimumab (1 mg/kg every 4 weeks) for 4 cycles, followed by durvalumab (10 mg/kg every 2 weeks), or durvalumab (10 mg/kg every 2 weeks) monotherapy, or tremelimumab (10 mg/kg every 4 weeks for 7 doses then every 12 weeks for 2 doses) monotherapy. MAIN OUTCOMES AND MEASURES: Safety and tolerability and efficacy measured by objective response rate. RESULTS: Among the 267 patients (220 men [82.4%]), median age (range) of patients was 61.0 (23-82) years. Grade 3/4 treatment-related adverse events occurred in 21 patients (15.8%) treated with durvalumab + tremelimumab, 8 (12.3%) treated with durvalumab, and 11 (16.9%) treated with tremelimumab. Grade 3/4 immune-mediated adverse events occurred in 8 patients (6.0%) in the combination arm only. Objective response rate (95% CI) was 7.8% (3.78%1339%) in the combination arm (n =129), 9.2% (3.46%-19.02%) for durvalumab monotherapy (n = 65), and 1.6% (0.04%-8.53%) for tremelimumab monotherapy (n = 63); median overall survival (95% CI) for all patients treated was 7.6 (4.9-10.6), 6.0 (4.0-11.3), and 5.5 (3.9-7.0) months, respectively. CONCLUSIONS AND RELEVANCE: In patients with R/M HNSCC and low or no PD-Lt tumor cell expression, all 3 regimens exhibited a manageable toxicity profile. Durvalumab and durvalumab + tremelimumab resulted in clinical benefit, with minimal observed difference between the two. A phase 3 study is under way

    Single-cell multi-omics reveals dyssynchrony of the innate and adaptive immune system in progressive COVID-19.

    Get PDF
    Dysregulated immune responses against the SARS-CoV-2 virus are instrumental in severe COVID-19. However, the immune signatures associated with immunopathology are poorly understood. Here we use multi-omics single-cell analysis to probe the dynamic immune responses in hospitalized patients with stable or progressive course of COVID-19, explore V(D)J repertoires, and assess the cellular effects of tocilizumab. Coordinated profiling of gene expression and cell lineage protein markers shows that S100
    corecore